
Testing, CI/CD, and Coverage

44-382 Secure Programming



Testing Your Code

• It should go without saying that testing your code is important
• How do we know it works?

• You should test for both known good behavior and known failure 
modes
• Knowing how your code can break is just as important as knowing it behaves 

correctly

• Identify your error states!

• You have previously been introduced to unit testing (if not, those 
slides are on the course website)



Kinds of Testing

• Unit testing
• “Do my different parts work?”

• Integration testing
• “Do I play well with others?”

• Performance testing
• Let’s not worry about optimization, focus on meeting performance requirements not 

maximizing performance
• Optimized code often means clever code; clever code often means broken code

• Smoke Testing
• Basic functionality tests
• “If I use the most basic functionality, do I let the magic smoke out?”

https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing



Automate, Automate, Automate

• Frequently testing and QA is not given the attention it deserves
• Discussion topic: Broken/incomplete software on release
• Discussion topic: Why does this seem to be more prevalent now?

• “Testing is boring” ~me (probably), 2022

• Manual testing is time consuming
• Consider: writing code, running it, providing input, debug, loop

• Once a part works, we may not revisit it
• Regressions are a thing!

• One (partial) solution: automate tests to run as part of your 
development cycle



Continuous Integration/Continuous Delivery

• CI: Automating changes from multiple developers
• Or, just you from multiple computers!

• CD: Automated deployment of live systems
• Think things like GitHub; web apps, etc.

• These systems can be more than just automation of testing
• An important part of their functionality

https://www.atlassian.com/continuous-delivery/continuous-integration



Some Automated Testing/CI/CD Tools

• GitHub Actions
• Run predefined actions/test when you push to GitHub

• Jenkins

• Azure DevOps

• GitLab Ci/CD

Note that these all integrate with your version control system

https://github.com/features/actions
https://www.jenkins.io/
https://azure.microsoft.com/en-us/products/devops/
https://docs.gitlab.com/ee/ci/


Demo: Configuring GitHub 
Actions to Run Unit Tests 
(Gradle)

https://github.com/neloe/cicdcov-demo



Code Coverage

• We already know it’s infeasible to test all possible inputs and outputs

• Ideally we’d like our tests to cover all possibilities
• We call this Code Coverage

• One of the easiest ways to calculate coverage is Line Coverage



Demo: Code Coverage 
(Netbeans, Probably using JCov?)



Is Line Coverage Good Enough?

• Consider a Control Flow Graph
• Graph notation representation of paths 

that control can take as your code runs

• Consider the graphs to the left; how 
many paths are possible to get from 
the top to the bottom?

• Determining the number of paths 
from the start to the end is… 
nontrivial
• Easier for smaller graphs; small simple 

functions are easier to test!
• Do we consider simple paths? Paths with 

loops? Reuse edges if we get to a node?
• What if every path isn’t possible?



How Many Paths Through The Graph?



JCov

• Part of OpenJDK

• Types of coverage:
• Block

• Line

• Branch

• Method

• Works with JUnit, etc



Coverage.py

• https://coverage.readthedocs.io/en/6.4.4/

• Handles
• Line

• Branch

• Python has a built in unittest module; plays well with that

https://coverage.readthedocs.io/en/6.4.4/


GCov

• Coverage tool for use with the GNU Compiler Collection

• Profiles your executable, so use whatever unit test framework you 
want

• Analyzes line coverage

• Can tell you the number of times a line of code was executed
• Use with gprof to fine tune performance if you really want to.

• ONLY works with code compiled with a GNU Compiler
• No clang, sadly


	Slide 1: Testing, CI/CD, and Coverage
	Slide 2: Testing Your Code
	Slide 3: Kinds of Testing
	Slide 4: Automate, Automate, Automate
	Slide 5: Continuous Integration/Continuous Delivery
	Slide 6: Some Automated Testing/CI/CD Tools
	Slide 7: Demo: Configuring GitHub Actions to Run Unit Tests (Gradle)
	Slide 8: Code Coverage
	Slide 9: Demo: Code Coverage (Netbeans, Probably using JCov?)
	Slide 10: Is Line Coverage Good Enough?
	Slide 11: How Many Paths Through The Graph?
	Slide 12: JCov
	Slide 13: Coverage.py
	Slide 14: GCov

