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Abstract—Unmanned aerial vehicles (UAVs) are widely used for
military and civilian applications. Despite their wide adoption,
they are vulnerable to cyber-attacks, which could lead to serious
consequences that cause the UAVs to crash or be directed to
undesired locations. In this context, several works have investi-
gated false data injection (FDI) attacks. However, existing studies
often assume that the attacker knows all the system and control
parameters, which may not always be the case. In this paper,
we propose a strategy for stealthy FDI attacks that does not
require full knowledge of the system and control parameters.
This approach eavesdrops and injects false commands and data
into two main communication channels, namely, the feedback
channel (from the UAV to the ground controller) and the forward
channel (from the ground controller to the UAV). The attacker
incorporates two separate Kalman filters that process inputs from
both channels and subsequently generate an estimate of the UAV’s
current state. Then, stealthy false data and commands are injected
while ensuring UAV’s stability. We tested the proposed attack in
simulation and validated it through experiments on an actual
UAV. Our experimental results demonstrate that the proposed
FDI attack causes the UAV to deviate from its original path while
remaining stealthy. We also demonstrate that our attack causes
a large deviation in the UAV’s path compared to other attacks
that assume full knowledge of the system parameters. Through
this study, we aim to shed some light that helps to develop robust
defense mechanisms against such attacks.

Index Terms—UAV, stealthy false data injection, validation.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are cyber-physical sys-
tems that depend on real-time communication, onboard sensor
measurements, and control system to carry out flight missions.
Their several attractive features have led to their wide adoption
in both civilian and military applications, such as the deliv-
ery of goods [1], search and rescue operations [2], disaster
management [3], and surveillance [4]. These applications rely
on the state estimation process, which plays a significant
role in UAV’s operation. It involves the use of mathematical
models and sensor data to estimate the system’s state variables,
such as position, velocity, and orientation. However, the state
estimation process is susceptible to cyber-attacks over the
communication channels connecting the UAV to the ground
controller [5]. Among various types of cyberattacks, false data
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injection (FDI) attacks have been the focus of several research
works [6]. In these attacks, false command and sensor data are
injected into the communication channels, leading to incorrect
state estimates that can result in severe accidents and potentially
irreversible damages [7], [8].

A particular type of FDI attack that has been gaining atten-
tion is the stealthy FDI attack. This attack involves the manipu-
lation of the system’s state estimation in such a way that it goes
undetected by anomaly detectors, potentially leading the UAV
to a malicious destination, causing a crash, or even hijacking.
Most of the existing research mainly focuses on the detection
of stealthy FDI attacks, with only a few studies exploring the
practical design of such stealthy attacks. Furthermore, the few
existing works that explore attack design involve unrealistic
assumptions, such as the attacker having full access to the
system and control parameters. This motivates us to design an
FDI attack that does not require the attacker’s full knowledge
of the system and control parameters. Furthermore, we aim to
validate this attack on an actual UAV, as all existing studies
are based on simulations. In what follows, we summarize the
related works and highlight their limitations to motivate our
research and contributions.

A. Related Works

We first summarize the existing works on the detection of
FDI attacks. Then, we cover the closely related works on the
design of stealthy FDI attacks.

1) FDI Attack Detection: Extensive research has been con-
ducted to ensure the secure operation of the UAV, consid-
ering vulnerabilities of the communication network, control
system, sensor measurements, and feedback channel to develop
effective methods for detecting cyber-attacks. In this context,
several studies have developed strategies to detect FDI attacks.
Xiao et al. [9] proposed an estimation-based modified sliding
innovation sequence method to detect FDI attacks on UAV
sensors and actuators. Ye et al. [10] proposed a summation of
the innovation method to detect FDI attacks on UAVs. Zhou et
al. [11] designed a matrix-based framework that gives weights
to the different threat levels for attack detection. Miao et al.
[12] proposed a coding-based detection scheme to detect FDI
attacks. Zhao et al. [13] designed a data-driven attack and
proposed a detection method based on the subspace matrix
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observability and coding theory. While these works studied the
detection of FDI attacks, not many of them considered stealthy
attacks that can bypass the anomaly detector.

2) FDI Attack Design: Several works investigated FDI
attack design in networked cyber-physical industrial control
systems. These designs include optimal strategies and con-
ditions subject to undetectability [14], Kullback–Leibler (KL)
probability divergence [15], residual distributions [16], optimal
switching conditions [17], and game theory [18], [19]. Further-
more, the FDI attack on quantized network control was studied
in [20]. In [21], a control signal attack was proposed on the
linear quadratic Gaussian control system where the optimal
trade-off between the stealthiness of the attack and damage
caused was studied. In [22], the statistic error cost was used to
find the optimal attack strategy. However, the prior attacker’s
knowledge of the system matrices is required to model and
design the attack strategy. Similarly, [23] presented an FDI
attack formulated as an optimization problem where the attack
sequence is subject to the upper bound bias introduced in the
detection statistics. However, the work assumes full attacker’s
knowledge of the statistical properties of the system, feedback
controller, and actuator.

In a closely related work, Kwon et al. [24] developed a
stealthy FDI attack on the UAV’s state estimation. The author
investigates the conditions to predict the effect of the attack and
then designed the optimal FDI attack by solving a constrained
optimization problem. However, this work assumed that the
attacker knows the physical system matrices and controller
parameters. Dash et al. [25] introduced malware-based FDI
attacks considering the vulnerabilities of the Proportional-
Integral-Derivative (PID) control system. The work in [25]
proposed an FDI attack assuming that the adversary already
knows the PID control parameters and that the parameters
are constant. Chen et al. [26] proposed an FDI attack on a
magnetometer. Su et al. [27] developed a spoofing strategy
to manipulate the GPS, leading the UAV to any arbitrary
destination following a constrained optimization problem.

B. Limitations

The existing attack strategies assume that the attacker has
full knowledge of the system’s physical matrices and control
parameters. While assuming that the attacker knows the system
matrices is possible [25], assuming that the attacker has full
knowledge of the system and control parameters is not realistic.
There is a need for an FDI attack strategy that relaxes this strict
assumption and considers cases where the attacker has partial
knowledge of the system and control parameters of the UAV
to launch the stealthy FDI attack. Also, studying the effect of
this partial knowledge of the system and control parameters
at the attacker on the effectiveness of the attack requires
further investigations. Moreover, one of the key motivations and
contributions of our study is the practical implementation of the
attack on an actual UAV, moving beyond theoretical models and
simulations that have been conducted in the existing research.

C. Contributions

To address the aforementioned limitations and fill the re-
search gap, we have carried out the following:

• We developed a technique for a stealthy FDI attack that
does not require the attacker’s full knowledge of the
system and control parameters. This approach targets two
communication channels, namely, the feedback channel
(from the UAVs to the ground controller) and the forward
channel (from the ground controller to the UAV). We
incorporate two separate Kalman filters at the attacker
that process inputs eavesdropped from both channels and
subsequently generate an estimate of the UAV’s current
state. The attacker then targets the feedback channel to
manipulate the sensors’ readings, leading to incorrect state
estimation. The attack on the forward channel aims to keep
the system in a stable state so that the anomaly detector
does not raise an alarm.

• To validate the proposed attack, we have developed a
testbed that involves an actual UAV, ground control sta-
tion, and attacker. The experimental validation involved
collecting sensor measurements and control signals from
the UAV and injecting false commands and data following
our proposed attack strategy, which ultimately caused the
UAV to deviate from its original path.

• We have evaluated the proposed strategy via simulations
and experimental validation. Our simulations demonstrate
that the proposed attack strategy caused a large state
estimation error (e.g., large deviations in the UAV’s
path) compared with existing strategies while remaining
stealthy. Also, our experimental results demonstrated that
the residual errors after the attack remain close to zero,
indicating the stealthiness of the attack. We have also
reported the corresponding deviations in the UAV’s path.

The remainder of this paper is as follows. In Section II,
we introduce the system model including the state estimation,
anomaly detector, and attack model. In Section III, we present
the proposed attack strategy. Section IV presents the simu-
lation results, a description of the testbed and the practical
implementation of the attack, and the experimental results.
Finally, Section VI concludes the paper and discusses potential
directions for future research.

II. SYSTEM MODEL

We consider the system model shown in Fig. 1. The system
consists of a UAV, a ground controller, and an attacker. The
UAV and ground controller communicate over two channels:
(a) the feedback channel carries the sensor measurements from
the UAV to the ground control station. The ground station uses
the sensor measurements to estimate the state of the UAV (e.g.,
position, speed, etc.) and determines the control signal; (b) the
forward channel carries the control signals from the ground
control station to the UAV to control the physical actions of
the UAV (e.g., movement). The ground control station employs
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Fig. 1. UAV system architecture under proposed FDI attacks

a residual-based anomaly detector. While we consider herein a
Chi-square detector, the attack strategy described herein works
against any residual-based anomaly detector. As shown in Fig.
1, an attacker is located in the middle between the UAV and the
ground control station. The attacker eavesdrops on the feedback
and forward channels between the UAV and the ground station
and uses the information in two Kalman filters (F1 and F2 in
Fig. 1) to inject stealthy false commands and data into these
channels while bypassing the Chi-square anomaly detector at
the ground control station. These two filters eliminate the need
for the attacker’s knowledge about the exact control parameters.

Next, we discuss the system state estimation, the residual-
based anomaly Chi-Square detector, and the attack model.

A. State Estimation and Control at Ground Station

Consider a UAV system modeled as a linear time-invariant
system [6], [9], [10] given by

xk+1 = Axk +Buk + wk,

yk = Cxk + vk,
(1)

where A,B, and C represent the state transition, control,
and measurement matrices, respectively, which are known as
system matrices, xk ∈ Rn, uk ∈ Rm and yk ∈ Rp represent
the system states, control inputs, and sensor measurement
outputs, respectively, w(k) ∈ Rn and v(k) ∈ Rp represent
the process noise and measurement noise that are independent
and identical distribution (i.i.d.) Gaussian random vectors with
zero mean and covariance matrices Q and R, respectively, i.e.,
wk ∼ N (0, Q), and vk ∼ N (0, R).

Kalman filter is used at the ground control station to estimate
the state xk using yk as follows

x̂k0 = Ax̂k−1 +Buk−1,

Pk0
= APk−1A

T +Q,

Kk = Pk0C
T
(
CPk0C

T +R
)−1

,

x̂k = x̂k0 +Kk (yk − Cx̂k0) ,

Pk = (I −KkC)Pk0 ,

(2)

where x̂k0 represents the initial estimate of state xk, Pk0

is a corresponding error covariance matrix having Pk0
=

E[(xk0
− x̂k0

)(xk0
− x̂k0

)T ], Kk ∈ Rm×p represents the
Kalman’s filter gain at time instant k, and I is the identity
matrix. The Kalman filter converges to a constant K provided
with any initial condition [28]. Therefore, the steady-state error
covariance becomes P ≜ limk→∞ Pk, where P is a positive
semi-definite matrix with the proper dimensions. Hence, the
Kalman filter has a fixed gain as follows

K = PCT
(
CPCT +R

)−1
. (3)

Based on the current system estimate x̂k, the feedback
control can be designed as [27], [29]

uk = −Lx̂k, (4)

where L is the controller’s gain, which determines the strength
or influence of the control action. This feedback control is
designed to regulate the system’s behavior and ensure it follows
a desired path or maintains a specific state. The negative sign in
front of Lx̂k indicates that the control action is applied in the
opposite direction to the estimated state. This is a characteristic
of negative feedback control, which is commonly used to
stabilize systems. In simple terms, the controller estimates
the current state of the system, compares it with the desired
state, and applies a control action proportional to the difference
between the two. The control action is applied in such a way
as to drive the system toward the desired state.

Define the estimation error under normal operation as

ek ≜ xk − x̂k. (5)

From (2), we can write the next estimate as follows

x̂k+1 =Ax̂k +Buk

+K(yk+1 − C(Ax̂k +Buk)).
(6)

Using (1) and (6), we have

ek+1 =xk+1 − x̂k+1

=(I −KC)Aek + (I −KC)wk

−Kvk+1.

(7)

Using (4) in (1) and merging with (7), we have the system
evolves as follows[

xk+1

ek+1

]
=

[
A−BL BL

0 (I −KC)A

] [
xk

ek

]
+

[
I

I −KC

]
wk −

[
0
K

]
vk+1.

(8)
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For the stability of the system, there are two closed-loop
gains: L (controller’s gain) and K (Kalman’s gain). The system
in (8) is stable only if the eigenvalues of the matrices (A−BL)
and (I − KC)A are in the unit circle. This is possible by
designing the controller and filter gains (i.e., L and K) [24],
[27], whereas (A,B) is controllable and (A,C) is observable.

B. Chi-Square Detector

To ensure the normal operation of the UAV, the ground
control station is equipped with an anomaly detector that
monitors the system operation and detects anomalies such as
false data using the statistical attributes of the acquired inno-
vations. We consider a χ2-detector [30], which is a residual-
based detector that is used to detect anomalies in the system.
The detector makes the decision if there is an anomaly based
on the summation of the squared innovations normalized by
covariance P . The criteria for detection [30] is given by

k∑
i=k−τ+1

rTk P
−1rk

H0

≶
H1

ρ(ϕ), (9)

where τ is the size of the detection window, rk is a residual
of the system with i.i.d. Gaussian process with zero mean and
covariance P , i.e., rk ∼ N (0, P ) with P = CPkC

T +R, ρ is
the threshold, and null hypothesis H0 is true when the system is
under normal condition, whereas, the hypothesis H1 represents
the presence of an anomaly. Finally, ϕ = χ2

1−µ, where µ is the
detector false alarm rate.

C. Attack Model

In UAVs, the actuators and sensors are connected to the
forward and feedback communication channels, respectively
[31], [24]. The FDI attack is launched as follows

yak = yk + Γk, (10)

ua
k = uk + ηk, (11)

where Γk and ηk are the attack vectors against the feedback
and forward communication channels, respectively, and yak and
ua
k represent the compromised sensor’s output and controller’s

output due to the feedback and forward channel attacks (10)
and (11), respectively, as shown in Fig. 1. The attacker’s
objective is to design Γk and ηk such that large estimation
errors are attained at the controller, causing deviations to the
UAV’s trajectory, while remaining stealthy (i.e., bypassing the
H1 hypothesis of the χ2-detector).

III. SEALTHY FDI ATTACK STRATEGY

In this section, we discuss the design strategy of the proposed
FDI attack.

A. FDI Attack

The system in (1) can be written as follows under attack

xa
k+1 = Axa

k +Bua
k + wa

k ,

yak = Cxa
k + vak ,

(12)

where xa
k+1, ua

k, yak represent the system state, control, and
measurement under attack. In order to simplify our notation, the
superscript a representing ‘attack’ has been omitted, since all
variables from here on will be in the context of a system under
attack. The term a will be incorporated only in the controller’s
and Kalman’s gains (La and Ka) to differentiate them from
the actual gains (L and K) adopted at the ground control
station. In the following, we consider that the attacker has a
partial system and control knowledge. Hence, we assume that
the attacker only knows the system matrices, i.e., (A,B,C).
However, the attacker does not know K and L. This relaxation
of the assumption of full attacker’s knowledge is practical as
the attacker can infer the system matrices (A,B,C) [25] as
we will demonstrate in the implementation section. We will
demonstrate a strategy where the attacker does not need to use
the exact K and L adopted at the ground control station for
stealthy FDI, which is unlike the existing literature that requires
the attacker’s knowledge of system matrices (A,B,C), Q, R,
and parameters K and L.

Given the system matrices, the attacker employs two filters
to estimate the current state of the compromised UAV as shown
in Fig. 1. Using the first filter F1, the state estimation is given
by

x̂k+1 =Ax̂k +Buk

+Ka (yk+1 − C (Ax̂k +Buk)) ,
(13)

where x̂k is the estimate of the current state based on the
measurement yk. A similar process is applied using the second
filter F2, such that

ˆ̄xk+1 =Ax̂k +Buk

+K
(
yak+1 − C (Ax̂k +Buk)

)
,

(14)

where the second filter utilizes the measurement yak to output
the current estimate of the state. The attacker’s filter gain Ka

is used for both filters as it simplifies the design and maintains
a consistent estimate of the system state. The error between
the state estimation of both filters is computed as follows

ek ≜ x̂k − ˆ̄xk. (15)

Remark 1: From (8), the stability of (12) depends on the
stability of (A−BLa) and (I −KaC)A.

Remark 2: It is essential that the attack design still ensure
the stability of the closed-loop system. Failure to ensure system
stability can raise the anomaly detector’s alarm, which negates
the purpose of stealthiness.
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B. Attack Strategy

The attacker specifies Ka such that (I −KaC)A is stable,
i.e., the eigenvalues of (I −KaC)A are within the unit circle.
As for La, this is computed to maintain the stability, and
hence, stealthiness of the attack. Toward this goal, the attacker
computes La that maximizes the controller’s quadratic cost
function, which is given by

J = E

{ ∞∑
k=0

(
x⊤
k Wxk + u⊤

k Uuk

)}
, (16)

where W ∈ Rn×n and U ∈ Rn×n are symmetric weighting
positive semi-definite matrices such that W penalizes the states
and U penalizes the control variables. We rewrite (16), from
the attacker’s perspective, using the attacker’s control strategy
uk = −Layk such that

J = E

{ ∞∑
k=0

(
x⊤
k

(
W + C⊤La⊤ULaC

)
xk

)}
. (17)

The attacker designs La to ensure the stability of the system
while increasing the cost in (17) in a controlled manner so that
the cost does not overshoot, and hence, is not caught by the
anomaly detector. This is achieved by having the eigenvalues
of the matrices (A − BLaC) less than 1, i.e., inside the unit
circle, which can be expressed as

I ≜
{
La ∈ Rm×p : λ(A−BLaC) < 1

}
. (18)

Hence, the attacker aims to compute La that maximizes the
cost function (17) subject to the stability constraint in (18).
To solve this optimization problem, we adopt the Lyapunov
stability method. This method defines a set of differential
equations to analyze the steady-state stability of dynamic
systems. Lyapunov equations can be expressed as [32]–[34]

−x⊤
k

(
W + C⊤La⊤ULaC

)
xk =

d

dx

(
x⊤
k Sxk

)
,

= ẋ⊤
k Sxk + x⊤

k Sẋk,

= x⊤
k

(
A⊤

c S + SAc

)
xk,

(19)
where (A−BLaC) = Ac and S is a semi-definite symmetric
matrix. We have

V ≡ A⊤
c S + SAc + C⊤La⊤ULaC +W. (20)

Then, the cost function J can be written in terms of matrix S
as follows

J = tr(SX), (21)

where X = E
{
x0x

⊤
0

}
represents the initial condition. The

Hamiltonian function H can be defined to incorporate the
constraint (18) through a Lagrange multiplier Λ and the matrix
V [32]–[34]. Hence, we have

H = tr(SX) + tr(ΛV). (22)

To solve the optimization problem, we set the partial derivatives
of H with respect to Λ, S, and La to zero, i.e.,

0 =
∂H

∂Λ
= g = A⊤

c S + SAc + C⊤La⊤ULaC +W, (23a)

0 =
∂H

∂S
= AcΛ + ΛAT

c +X, (23b)

0 =
∂H

∂La
= ULaCΛCT −BTSΛCT. (23c)

The solution of these equations gives the controller gain La,
which can be computed in terms of S and Λ, which is given
by

La = U−1BTSΛCT
(
CΛCT

)−1
. (24)

In summary, the optimal control strategy from the attacker’s
perspective tries to maximize the cost function while ensuring
system stability. The approach involves defining the quadratic
cost function, expressing this cost in terms of the attacker’s
control strategy, ensuring stability, simplifying the optimization
problem, and finding the optimal solution using Lyapunov
stability and Lagrange multipliers.

In order to derive the attack signal Γk, we define the residual
rk as the difference between the current measurement yk and
the previous estimate x̂k as follows

rk = yk − ŷk−1,

rk = yk − Cx̂k−1,

= yk − C(Ax̂k−1 +Buk−1).

(25)

The difference between the compromised and normal residual
can be defined as follows

rdk,≜ rak − rk, (26)

where rak represents the residual of the system under attack and
rk is the normal residual. To ensure that the attack is stealthy,
the difference between the compromised and normal residuals
must be zero, i.e.,

0 = rak − rk. (27)

By substituting rak = yak − C(Ax̂k − Bua
k) and rk = yk −

C(Ax̂k −Buk) in (27), the feedback channel attack signal Γk

can be formulated as

Γk+1 = C(Aeak +B(Laηk)), (28)

where eak = x̂k − ˆ̄xk is the estimation error between filters F1

and F2 outputs as described in (15).
The FDI attack will cause the system to deviate from its

normal course if the attack signal on the forward channel is
divergent. Therefore, the attack signal on the forward channel
can be designed as follows

ηk+1 = Ωηk, (29)

where Ω is a matrix that is designed to cause the system
divergence. This is achieved by choosing Ω such that some of
its eigenvalues are outside the unit circle. However, it is crucial
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Fig. 2. Comparison of estimation error under different FDI attack strategies.

to ensure that while creating these disturbances, the overall
system does not cross into a state of instability that would
violate the Lyapunov stability criteria. Hence, Ω is designed
to be just unstable enough to cause the intended divergence
without destabilizing the overall system.

To evaluate the impact of the attack in the simulation results
section, we compute the covariance error matrix P a

k , when the
system is under attack, which can be expressed as

P a
k = ηkPkη

T
k + ΓkPkΓ

T
k , (30)

which is influenced by the attack signals ηk and Γk. The trace
of the error covariance matrix Pk under attack can be written
as

tr(P a
k ) = tr(ηkPkη

T
k ) + tr(ΓkPkΓ

T
k ), (31)

where tr(P a
k ) shows the trace of the covariance P a

k under the
attack vector ηk and Γk.

Algorithm 1 summarizes the steps taken by the attacker
to launch the proposed FDI attack. These include selecting a
stable gain Ka, computing S and Λ using Lyapunov equations,
computing the attacker’s controller gain La, and deriving the
feedback and forward attack signals Γk and ηk. Existing
literature assumes that the attacker has complete knowledge
of the system model’s parameters (A,B,C,Q,R), as well
as, the controller’s parameters (K,L). Herein, we proposed
a strategy where the attacker does not have knowledge of
Q,R,K,L, yet, launches a stealthy attack. We will show
in the experimental validation results how an attacker can
deduce (A,B,C) matrices and follow Algorithm 1 to launch
an effective yet stealthy attack. In summary, our proposed
attack strategy effectively relaxes the strict requirements on the
attacker’s knowledge.

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we first simulate the proposed FDI attack and
compare it with existing strategies. Then, we implement and
validate the proposed attack on a testbed.

Algorithm 1: Proposed FDI Attack Strategy
Input: Collect: input uk and output yk data streams
Output: Γk , ηk , La // Attack signals

1: and // Controller gain
2: begin
3: Run Filter F1 to estimate xk using yk
4: Run Filter F2 to estimate xk using yak
5: Select the stable filter gain Ka // ensures I −KaC to

be stable, i.e., eigenvalues within a
unit circle

6: Design the controller policy
7: do (23a) to solve S // Lyapunov equation
8: do (23b) to solve Λ // Lyapunov equation
9: if There is a feasible solution by solving (23a) and (23b) ;

10: using Matlab Control System Toolbox then
11: Output: La = U−1BTSΛCT

(
CΛCT

)−1 (24)
// Optimum gain for the controller

12: such that // A−BLaC asymptotically stable

13: end if
14: else
15: Return to line 7

16: Generate attack signals
17: do (28) to attain Γk

18: do (29) to attain ηk
19: Breakdown
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Fig. 3. Residual signals under different FDI attack strategies.

A. Simulation Results

The flight control system in [35] is considered herein with
the following parameters

A =

 0.9944 −0.1203 −0.4302
0.0017 0.9902 −0.0747

0 0.8187 0

 ,

B =

 0.4252
−0.0082
0.1813

 , C = I3,

(32)

where I3 is a 3 × 3 identity matrix. The noise covariance
matrices are Q = 0.1I and R = 0.1I . The state definition
x ∈ R3 denotes the pitch angle, pitch rate, and normal velocity.
Using these parameters, the Kalman gain and controller gain
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Fig. 4. UAV actual and estimated positions under the proposed FDI attack.

matrices from the ground control station perspective can be
calculated as follows

K =

 0.9173 −0.0005 −0.0006
−0.0005 0.9156 0.0054
−0.0006 0.0054 0.9135

 ,

L =
[
0.7981 −0.8586 −0.2925

]
.

(33)

In our strategy, the attacker does not need to follow the pa-
rameters in (33). Instead, the attacker parameters are calculated
using Algorithm 1 and are found to be as follows

Ka =

 0.1945 −0.0001 −0.0001
−0.0011 0.1941 0.0011
−0.0021 0.0011 0.1937

 ,

La =
[
0.1596 0.1717 −0.0585

]
.

(34)

The corresponding eigenvalues of (A−BLa) and (I−KaC)A
are [0.7868, 0.7584, 0.0528] and [0.0647, 0.9306, 0.8306], re-
spectively. These eigenvalues are all within the unit circle, i.e.,
Ka and La ensure the system stability.

Fig. 2 shows the performance of the flight system [35]
under the attack. We compared our attack strategy (using the
parameters in (34)) with the attack strategies in [13] and [24]
that require the attacker’s knowledge of the parameters in (33).
The trace of the estimation error covariance tr(P a

k) in Fig.
2 shows that the proposed attack caused a large estimation
error covariance tr(P a

k) compared with [13] and [24]. Also,
Fig. 3 shows the residuals of these attack strategies and ρ
indicates the χ2 detector’s threshold. It can be seen that the
residuals are below the detection threshold, which indicates the
stealthiness of the attacks. Hence, in conclusion, our proposed
attack strategy achieves high estimation error (hence causing
the UAV to deviate from its planned path) without being
detected by the χ2 detector (i.e., being stealthy).
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Fig. 5. Residual error of actual state and estimated state under the proposed
FDI attack. The same color code as in Fig. 4 is used herein.

B. Experimental Validation

First, we will discuss the testbed and attack implementation.
Then, we present and discuss the experimental results.

1) Tesbed: To validate our proposed attack, we have set up
a testbed with the following components: a DJI Tello EDU
drone [36], ALFA AWUS036ACH network adapter (antenna)
[37], and two computers. The first computer acts as a ground
control station where the UAV is connected to and receives the
control commands over the wireless channels. This computer
also has a χ2 anomaly detection system as explained in
Section II-B. The second computer acts as an attacker and
runs Kali Linux, Aircrack-ng, Wireshark, and tcpdump, and
is equipped with the ALFA adapter. This attacker eavesdrops
on the communications between the Tello EDU drone and the
ground control station, runs Algorithm 1, and injects the false
command and measurements into the drone.

2) Attack Implementation: The following steps were taken
in order to launch the proposed FDI attack on the DJI drone:

• Dataset Collection: A DJI flight map (3 × 3 m in size)
is used with 2D Cartesian positional coordinates. The DJI
Tello drone uses a vision positioning system that includes
a camera and two 3D infrared sensors. The drone uses
its positioning system to detect the flight map and sends
the corresponding positional coordinates. The drone sends
other telemetry data such as roll, pitch, yaw, time-of-
flight, etc. In this validation, our FDI attack targets the
2D positional coordinates to deviate the drone from its
original path. We record the 2D positional coordinates
before and after the attack and report the deviation as the
impact of the attack. We set the destination coordinate
to be (50, 80) and perform several flight missions, and
collect the control input signal uk and the output signal
yk representing the 2D positional coordinates of the drone.
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• Calculation of State Matrices: First, part of the collected
dataset was used in the Matlab System Identification
toolbox [38] to calculate the system matrices (A,B,C)
as in [25]. Then, (3) and (6) are used to compute the
estimated system output. Then, a comparison is made
between the estimated output and the actual output (real-
time movement of the UAV as collected by the attacker).
As some discrepancy exists between the estimated and
actual output due to noise, we used an iterative approach to
adjust the system matrices (A,B,C) for better accuracy.
With each iteration, the system matrices are adjusted using
collected data and the alignment between the estimated
and actual output is determined. The adjustments of
(A,B,C) continue until the estimated outputs converge
toward the actual outputs.

• Launching the FDI Attack: To remain stealthy, the attacker
injects attack vectors Γk and ηk such that deviations
caused by the attack vectors are within the detection
threshold. The actual threshold value is not necessarily to
be the same as the attacker’s assumed threshold. Here,
the attacker assumes a low ρ value. The attacker runs
Algorithm 1 as follows. First, the attacker specifies a
Ka value that maintains (I − KaC)A stable, i.e., with
eigenvalues inside the unit circle. Then, the attacker solves
(23a) and (23b) to find S and Λ, which are then used in
(24) to find La. Finally, the attack vectors Γk and ηk are
found using (28) and (29), respectively, which are injected
into the feedback and forward channels.

3) Experimental Results: Fig. 4 shows the effect of the
attack on the drone’s trajectory. The mission of the drone
was to reach the destination at coordinate (50, 80) with a
tolerance of 5%, which means that it is acceptable for the drone
to land within a 5% radius around the intended destination.
The actual path of the drone is depicted by the red and blue
lines for the 2D positional coordinates while the green and
orange lines represent the drone’s estimated position by the
ground controller after the FDI attack. The final estimated
position coordinates by the ground controller are (54, 76) (i.e.,
within 5% of the intended destination) while the actual position
coordinates (due to the FDI attack) are (32, 97) as can be seen
in Fig. 4. In our experiment, the drone initiated the landing
procedure, under the wrong impression that it has reached
its destination (50, 80). In reality, however, the drone ends
up at a different location, landing at the coordinate (32, 97).
This discrepancy between the actual and estimated positions
indicates the impact of the proposed FDI attack, leading to
a deviation in the drone’s landing destination without being
detected by the ground controller. This is confirmed by Fig.
5 which shows the residual error for the actual and estimated
positions. As shown in Fig. 5, all the residual errors (actual and
estimated) are around 0, i.e., below the detection threshold.
This demonstrates the stealthiness of the attack. The black
dotted line indicates the threshold adopted by the χ2 anomaly
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Fig. 6. Injected control signals in the forward channel for the position
coordinates.
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Fig. 7. Average deviation in position caused due to different injection values.

detector. Also, Fig. 6 shows the associated injected false control
signals for the 2D positions in the forward channel. As shown,
all the control signals are smooth, and there are no abrupt
changes in the control signals that can overshoot the quadratic
cost of the controller.

Fig. 7 shows the average deviation caused by the different
injection values in the feedback channel (i.e., Γk). The x-axis
depicts the range of optimal Γk values that have been calculated
by the attacker at different time steps. These caused deviations
by 7%− 45% in the planned path.

V. CONCLUSION

In this paper, we propose a stealthy false data injection attack
that does not require the attacker’s full knowledge of the system
and control parameters. The proposed attack targets both the
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feedback channel (from the UAV to the ground controller)
and the forward channel (from the ground controller to the
UAV). By setting up two estimation filters, the attacker can
inject false commands and measurement data that cause a
large estimation error at the ground controller while keeping
the attack stealthy (i.e., bypassing the residual error detector).
We examined the proposed strategy in simulation and also
via experimental validation using an actual drone. Our simula-
tion and experimental results confirmed the effectiveness and
stealthiness of the proposed attack.

Our future work will explore design strategies for false data
injection attacks in a multi-UAV network.
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