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AbstrAct
Reconfigurable intelligent surfaces (RIS) repre-

sent an important advancement in metamaterial 
technology, enabling the control of electromagnetic 
waves to enhance wireless communications. How-
ever, integrating RIS with unmanned aerial vehi-
cles (UAVs) introduces potential vulnerabilities that 
can significantly impact network performance. This 
research investigates the complexity of securing 
UAV-assisted RIS systems for next-generation com-
munication networks. We present a deep machine 
learning framework, Long Short-Term Memory 
Deep Deterministic Policy Gradient (LSTM-DDPG), 
to robustly address security concerns and ensure 
reliable communication within UAV-assisted RIS 
networks by countering malicious threats. Simu-
lation results confirm the efficacy of combining 
UAVs, RIS, and deep learning to mitigate attacks 
on UAV-RIS communication, with notable improve-
ments compared to other baseline approaches. 
Finally, we discuss open research challenges and 
future directions in this rapidly progressing field.

IntroductIon
The evolution of next-generation networks is set 
to reshape mobile networking through the inte-
gration of distributed network intelligence and the 
facilitation of sophisticated spectrum coexistence 
between an array of passive and active radio ser-
vices. Unmanned Aerial Vehicles (UAVs), with 
their unique attributes such as enhanced posi-
tioning freedom, trajectory control, cost-effective 
deployment, and maintenance, along with the 
capability to establish unobstructed line-of-sight 
(LoS) links, are expected to be instrumental in the 
advancement of 5G and forthcoming communi-
cation and networking technologies [1].

In the context of the Third Generation Partner-
ship Project (3GPP), UAVs can operate in various 
roles such as an aerial base station (ABS), an aerial 
relay (AR), or aerial user equipment (AUE). A variety 
of use cases have been identified for UAV-assisted 
wireless networks, promising significant enhance-
ments in throughput, security, and reliability [2].

Emerging in this technological landscape is the 
concept of Reconfigurable Intelligent Surface (RIS), 
a transformative technology capable of creating 
novel wireless transmission patterns and controlling 
the communication channel. Comprising electroni-
cally tunable and energy-efficient analog processing 
elements, a RIS can manipulate various proper-
ties of passive reflecting elements in real time. This 

ability to control the direction of incident electro-
magnetic signals optimizes the effective channel 
gain [3]. The versatility of RIS allows its deployment 
on diverse surfaces, including buildings, vehicles, 
and indoor walls, with minimal expense and effort 
[4]. RISs are expected to see widespread use in 
the future, particularly in the enhancement of wire-
less or cellular communications, as demonstrated 
by their promising performance in various studies, 
including [5]. These surfaces can be installed on 
building facades and roadside billboards to pas-
sively enhance the radio propagation environment. 
This augmentation aims to improve communica-
tion link conditions and boost data rates. Recog-
nizing the potential of RISs, it is both wise and 
essential to incorporate them into the design of 
UAV communication systems to develop resilient 
and forward-looking technical solutions.

RISs and UAVs hold the promise of playing 
a crucial role in fortifying cybersecurity within 
various scenarios such as vehicular-to-everything 
(V2X) communication, public safety networks, 
and Internet of things (IoT) networks. Intelligent 
reflectors, when employed as RISs, can enhance 
wireless communication and broaden network 
coverage. Through astute manipulation of the 
propagation environment, RISs can effectively 
alleviate signal interference, enhance signal quali-
ty, and bolster the overall reliability and security of 
UAV-assisted RIS communications. This capability 
proves especially valuable in V2X communica-
tion, public safety networks, and IoT networks, 
where numerous interconnected devices height-
en vulnerability to potential attacks and security 
breaches [6]. Conversely, UAVs can function as 
mobile sensing and monitoring platforms within 
UAV-assisted RIS communication networks. They 
can integrate various sensors, cameras, and com-
munication modules to identify and counteract 
cybersecurity threats. UAVs actively patrol desig-
nated areas of V2X networks, public safety net-
works, and IoT networks, recognizing anomalies 
and gathering real-time data on potential security 
breaches. Furthermore, UAVs play a role in swiftly 
implementing security measures in response to 
emerging threats, including the deployment of 
RISs to fortify network security and resilience.

The combination of RISs and UAVs in V2X net-
works, public safety networks, and IoT networks 
offers several advantages for cybersecurity. First-
ly, RISs contribute to enhanced signal coverage 
and quality, thereby reducing the vulnerability of 
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devices to unauthorized access or malicious inter-
ference. Secondly, UAVs function as agile and 
adaptable security agents, capable of promptly 
identifying and responding to security threats in 
real time. They excel at conducting surveillance, 
detecting intrusions, and deploying countermea-
sures to safeguard the integrity of RIS-assisted net-
works. Lastly, the mobility and flexibility of UAVs 
enable them to effectively address security chal-
lenges in diverse and dynamic environments such 
as V2X networks, public safety networks, and IoT 
networks including remote or hard-to-reach loca-
tions. The integration of RISs and UAVs in dynamic 
environments such as V2X networks, public safety 
networks, and IoT networks holds significant poten-
tial for strengthening cybersecurity. RISs improve 
wireless communication and network coverage, 
while UAVs provide mobile sensing and moni-
toring capabilities. Together, they enhance threat 
detection, response time, and overall network 
security, thereby contributing to the protection of 
devices and data from cyber threats.

The UAV-assisted RIS offers a comprehensive 
analysis of the environment to ensure the efficient 
safeguarding of an extensive perimeter. It per-
forms surveillance in areas susceptible to threats, 
dynamically adjusting its surface orientation to 
limit coverage in non-critical zones. Emphasizing 
security and reliability as primary considerations, 
we have incorporated these fundamental aspects 
into the design of the UAV-assisted RIS wireless 
network, proposing potentially effective solutions. 
Figure 1 illustrates the specified reliability and 
security requirements for the UAV-assisted RIS.

The combination of RIS and UAV technolo-
gies can profoundly enhance multiple aspects of 
communication and networking, from network 
coverage to massive multiple access, and physical 
layer security [2]. However, as we explore these 
applications, we must consider the potential vul-
nerabilities that could be exploited by malicious 
actors and lead to various types of cyber attacks. 
The normal operation scenario of the RIS-aided 
UAV is presented in Fig. 2a. However, the ability 
to program the wireless channel offered by RIS 
has its downside. While it can enhance the resil-
ience and dependability of next-generation wire-
less networks, it also opens up potential avenues 
for launching destructive over-the-air attacks. The 
affordability and low-power consumption of RISs 
make it possible to deploy illegitimate devices or 
compromise genuine ones.

Motivated by the aforementioned challeng-
es, this article suggests a secure and efficient 
deep machine learning framework designed for 
UAV-assisted RIS communication. The proposed 
framework aims to ensure secure communication 
in dynamic practical environments such as V2X 
communication, public safety, and IoT networks.

The notable contributions of this article are 
emphasized as follows.
• This article delves into the potential adversarial 

implications of integrating RIS with UAV com-
munication frameworks. We examine a variety 
of RIS-assisted attacks, including those previ-
ously discussed in the literature [3] and poten-
tial new threats. From the perspective of an 
attacker, we explore the characteristics of RIS 
that render it susceptible to adversarial misuse 
and consider potential countermeasures.

• We present the LSTM-DDPG framework 
designed for secure communication in 
UAV-assisted RIS communication. The LSTM-
based actor-network and critic network are 
meticulously developed to capture temporal 
correlations in state features, thereby improv-
ing the overall state representation capability.

• Simulation results indicate that the proposed 
LSTM-DDPG algorithm exhibits strong con-
vergence performance and surpasses state-
of-the-art methods in terms of training time, 
energy consumption, and security.

rIs-EnAblEd uAV communIcAtIons: 
ApplIcAtIons And sEcurIty ImplIcAtIons

ExtEndEd coVErAgE through uAV-AssIstEd 
rIs communIcAtIons

UAVs fitted with Intelligent Omni-surfaces 
(IOS), a variant of RIS, can extend coverage and 
enhance spectral efficiency in cellular networks. 
With the ability to control signal direction without 
blind spots, the IOS can extend the signal reach 
of a base station into dead zones, providing 
360-degree coverage. Despite these advantages, 
this setup is susceptible to spoofing attacks [5]. A 
malicious actor could utilize a rogue UAV-assist-
ed RIS setup to redirect communication, poten-
tially creating network disruption or intercepting 
sensitive data.

IncrEAsEd cApAcIty VIA uAV-AssIstEd rIs communIcAtIons
UAV-assisted RIS systems can significantly 
improve network throughput and capacity. By 
controlling the phase shifts of the RIS elements, 
the system can cancel interference, assuming 
known Channel State Information (CSI) at the RIS 
controller. Despite these advantages, this scenar-
io also presents a potential avenue for jamming 
attacks as shown in Fig. 2b.

FIGURE 1. UAV-assisted RIS: Ensuring secure and reliable perimeter protection.
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including the deployment of RISs to fortify network security
and resilience.

The combination of RISs and UAVs in V2X networks, pub-
lic safety networks, and IoT networks offers several advantages
for cybersecurity. Firstly, RISs contribute to enhanced signal
coverage and quality, thereby reducing the vulnerability of
devices to unauthorized access or malicious interference. Sec-
ondly, UAVs function as agile and adaptable security agents,
capable of promptly identifying and responding to security
threats in real time. They excel at conducting surveillance, de-
tecting intrusions, and deploying countermeasures to safeguard
the integrity of RIS-assisted networks. Lastly, the mobility and
flexibility of UAVs enable them to effectively address security
challenges in diverse and dynamic environments such as V2X
networks, public safety networks, and IoT networks including
remote or hard-to-reach locations. The integration of RISs and
UAVs in dynamic environments such as V2X networks, public
safety networks, and IoT networks holds significant potential
for strengthening cybersecurity. RISs improve wireless com-
munication and network coverage, while UAVs provide mobile
sensing and monitoring capabilities. Together, they enhance
threat detection, response time, and overall network security,
thereby contributing to the protection of devices and data from
cyber threats.

The UAV-assisted RIS offers a comprehensive analysis of
the environment to ensure the efficient safeguarding of an
extensive perimeter. It performs surveillance in areas suscep-
tible to threats, dynamically adjusting its surface orientation
to limit coverage in non-critical zones. Emphasizing security
and reliability as primary considerations, we have incorporated
these fundamental aspects into the design of the UAV-assisted
RIS wireless network, proposing potentially effective solu-
tions. Figure 1 illustrates the specified reliability and security
requirements for the UAV-assisted RIS.

The combination of RIS and UAV technologies can pro-
foundly enhance multiple aspects of communication and net-
working, from network coverage to massive multiple access,
and physical layer security [2]. However, as we explore these
applications, we must consider the potential vulnerabilities that
could be exploited by malicious actors and lead to various
types of cyber attacks. The normal operation scenario of the
RIS-aided UAV is presented in Fig. 2a. However, the ability to
program the wireless channel offered by RIS has its downside.
While it can enhance the resilience and dependability of
next-generation wireless networks, it also opens up potential
avenues for launching destructive over-the-air attacks. The
affordability and low-power consumption of RISs make it
possible to deploy illegitimate devices or compromise genuine
ones.

Motivated by the aforementioned challenges, this paper sug-
gests a secure and efficient deep machine learning framework
designed for UAV-assisted RIS communication. The proposed
framework aims to ensure secure communication in dynamic
practical environments such as V2X communication, public
safety, and IoT networks.

The notable contributions of this article are emphasized as
follows.

• This paper delves into the potential adversarial implica-

Figure 1. UAV-assisted RIS: Ensuring secure and reliable perimeter protec-
tion.

tions of integrating RIS with UAV communication frame-
works. We examine a variety of RIS-assisted attacks,
including those previously discussed in the literature [3],
[4] and potential new threats. From the perspective of an
attacker, we explore the characteristics of RIS that render
it susceptible to adversarial misuse and consider potential
countermeasures.

• We present the LSTM-DDPG framework designed for
secure communication in UAV-assisted RIS communica-
tion. The LSTM-based actor-network and critic network
are meticulously developed to capture temporal correla-
tions in state features, thereby improving the overall state
representation capability.

• Simulation results indicate that the proposed LSTM-
DDPG algorithm exhibits strong convergence perfor-
mance and surpasses state-of-the-art methods in terms of
training time, energy consumption, and security.

II. RIS-ENABLED UAV COMMUNICATIONS:
APPLICATIONS AND SECURITY IMPLICATIONS

A. Extended Coverage through UAV-assisted RIS Communi-
cations

UAVs fitted with Intelligent Omni-surfaces (IOS), a variant
of RIS, can extend coverage and enhance spectral efficiency in
cellular networks. With the ability to control signal direction
without blind spots, the IOS can extend the signal reach of a
base station into dead zones, providing 360-degree coverage.
Despite these advantages, this setup is susceptible to spoofing
attacks [5]. A malicious actor could utilize a rogue UAV-
assisted RIS setup to redirect communication, potentially
creating network disruption or intercepting sensitive data.
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mAssIVE multIplE AccEss through 
uAV-AssIstEd rIs communIcAtIons

UAV-assisted RIS systems can address the mas-
sive access challenges posed by the growing 
number of IoT devices. By steering indoor wire-
less channels in favor of specific users, these 
systems can enhance system capacity [7]. Yet, 
they are vulnerable to DoS attacks, where an 
attacker could potentially overload the network 
with illegitimate access requests, causing service 
disruptions.

spEctrum shArIng In uAV-AssIstEd rIs communIcAtIons
RIS technology can enable efficient spectrum 
sharing by reducing interference. However, this 
feature presents an opportunity for adversaries 
to launch spoofing attacks. An attacker could 
manipulate the RIS phase shifters to disrupt the 
network’s spectrum sharing, causing interference 
and affecting network performance.

physIcAl lAyEr sEcurIty (pls) In 
uAV-AssIstEd rIs communIcAtIons

UAV-assisted RISs can improve the PLS of ter-
restrial cellular networks by establishing domi-
nant Line-of-Sight (LoS) links between aerial and 
ground nodes. However, the same LoS advantage 
could be exploited by eavesdroppers to intercept 
data. The RIS could also be manipulated to cre-
ate a destructive reflected signal, diminishing the 
received SNR at specific locations and limiting 
eavesdropping chances. Despite these measures, 
persistent and sophisticated attackers could still 
find ways to compromise these systems, under-
scoring the need for robust security protocols.

potEntIAl VulnErAbIlItIEs And AttAcks 
In uAV-AIdEd rIs-AssIstEd systEms

Emerging research is illuminating a range of poten-
tial attack vectors in Reconfigurable Intelligent 
Surface (RIS)-assisted communication systems, 
particularly those involving Unmanned Aerial 
Vehicles (UAVs). Such attacks take advantage of 
the unique reflective properties of RIS and can 
be launched by an adversary who has either com-
promised an existing RIS controller or deployed 
their own RIS. Herein, we explore the nature and 

potential impact of these attacks, drawing upon 
both existing and emerging research.

sIgnAl cAncEllAtIon
A signal cancellation attack in a RIS-assist-
ed system doesn’t follow the typical approach 
of a conventional jammer, which seeks to 
increase interference at the receiver and there-
by decrease the signal-to-interference-and-noise 
ratio (SINR) [8]. Instead, the adversary aims to 
generate a signal that mirrors the original one 
in phase but in the reverse direction. This signal, 
once it reaches the receiver, destructively inter-
feres with the original signal, effectively cancel-
ing it out. In a UAV-aided system, the UAV could 
be manipulated to position the RIS optimally for 
such an attack, or could itself be used to relay 
the phase-reversed signal. 

ExploItIng bEAmformIng
Beamforming is a crucial aspect of coverage in 
high-frequency systems that utilize large antenna 
arrays, and in UAV-aided RIS-assisted systems, it 
is of paramount importance [9]. These systems 
estimate the appropriate beamforming vectors 
from the Channel State Information (CSI) derived 
from transmitted pilot sequences. However, an 
adversarial RIS could introduce phase manipula-
tions during pilot sequence transmissions, leading 
to beam vectors calculated from the manipulated 
CSI. The UAV could be used to transmit these 
manipulated pilot sequences, thereby disrupting 
the beamforming process.

ExploItIng bEAm mAnAgEmEnt
Within analog beamforming systems, such as those 
applicable in UAV-aided RIS-assisted systems, the 
transmission beam is derived from a predefined set 
of beam vectors, as mentioned in [9]. These beam 
vectors are employed iteratively to scan the cell 
area. An adversarial RIS possesses the capability to 
adjust its reflection coefficients deliberately, gener-
ating a scattered signal that varies in accordance 
with the sweeping beam. If this manipulated scat-
tered signal is directed towards the receiver, it has 
the potential to distort the received power mea-
surements, leading to the selection of a sub-optimal 
beam pair. This form of attack could be particularly 
potent, especially if the RIS can optimize its phase 

Emerging research is 
illuminating a range 
of potential attack 
vectors in Recon-

figurable Intelligent 
Surface (RIS)-assist-
ed communication 
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those involving 

Unmanned Aerial 
Vehicles (UAVs).

FIGURE 2. UAV-assisted RIS communication: a) normal operation; b) under adversarial exploitation
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shifts based on either full or partial channel state 
information (CSI).

physIcAl lAyEr AuthEntIcAtIon (plA) mAnIpulAtIon
Physical Layer Authentication (PLA) stands out as 
an emerging security technique that associates 
a wireless transmitter’s identity with its specific 
location and channel attributes, which can be 
discerned by receivers, as outlined in [10]. In 
a UAV-aided RIS-assisted system, an adversar-
ial RIS has the potential to undermine PLA by 
introducing rapid and random adjustments to 
the phase shifts. This manipulation can induce 
oscillations in performance indicators crucial for 
authentication, such as received signal strength 
or SNR. Executing this attack requires synchro-
nization with the network and operates at a 
sub-symbol level. In cases where highly accurate 
channel estimates are available, there exists the 
possibility of exploiting them to arbitrarily dis-
guise the identity of a node.

rIs-AIdEd noIsE InjEctIon
A RIS can be employed to assist an active jam-
mer, in a way that the jammer transmits noise 
towards the RIS, which in turn “relays” the noise 
along with the legitimate signal. This undermines 
the RIS’s effectiveness, as the added noise ham-
pers the legitimate signal. In a UAV-aided RIS-as-
sisted system, the UAV could be manipulated 
to position the RIS optimally for such an attack, 
or could itself be used to relay the noise. This 
attack necessitates active transmission towards 
the RIS and can target any legitimate RIS. In the 
presence of impinging noise, the SNR of the 
legitimate link scales linearly with the size of the 
RIS, contrasting with the quadratic scaling in the 
absence of an attack.

ExploItIng rIs for coVErt surVEIllAncE
Given the reflective capabilities of RIS, an adver-
sary could strategically position a UAV to eaves-
drop on the communication between legitimate 
users, exploiting the RIS as a kind of ‘mirror’ to 
intercept the signals. This would necessitate a 
deep understanding of the RIS properties and 
the communication system, but it is a plausible 
threat that needs to be considered. In [11], a 
machine learning-based beamforming policy for 
UAV-assisted RIS was enhanced to improve the 
performance of communication channels. The 
DDPG algorithm provides an effective means 
to learn the optimal trajectory for Unmanned 
Aerial Vehicles (UAVs) and configure Recon-
figurable Intelligent Surfaces (RIS) efficiently 
in an online setting [12]. Reference [13] intro-
duced an extended DDPG algorithm incorpo-
rating multi-dimensional rewards. However, it 
is noteworthy that DDPG with fully connected 
deep neural networks lacks the representation-
al capacity needed for precise state inference. 
In [14], the authors introduced a secure UAV 
communication strategy to counteract smart 
jammers. This approach employed a knowl-
edge-based reinforcement learning (RL) meth-
od, utilizing domain information to decrease the 
state space and expedite the convergence of the 
RL algorithm. Conventional optimization meth-
ods are not well-suited for trajectory planning in 
real-time scenario [15].

mAnIpulAtIon of uAV-AssIstEd rIs lInk

The link between the UAV and the RIS is anoth-
er potential point of vulnerability. An adversary 
could aim to disrupt this link, either by jamming 
the communication or by injecting false informa-
tion. This could result in the UAV being unable 
to control the RIS effectively, or in the worst-case 
scenario, the UAV could be tricked into executing 
malicious commands.

rIs-AIdEd uAV swArm ExploItAtIon
If multiple UAVs are used in the system, possibly in 
a swarm configuration, an adversary might attempt 
to exploit the interactions between the UAVs. They 
could try to compromise one UAV in the swarm 
and use it to disrupt the others, or they could inject 
false information into the swarm’s communication 
to cause confusion and disruption.

The listed vulnerabilities underscore the need 
for robust security protocols in UAV-aided RIS-as-
sisted systems. Further research is required to 
develop countermeasures against these threats 
and to continually monitor the system for any 
signs of intrusion or interference. The incorpora-
tion of advanced security features like artificial 
intelligence and machine learning could help bol-
ster the system’s defenses, enabling it to detect 
and respond to threats more effectively. As the 
field of RIS-assisted communication continues to 
evolve, the focus on security will remain a cru-
cial aspect, ensuring the reliability and integrity of 
these advanced communication systems.

proposEd ddpg-lstm frAmEwork 
for IntrusIon dEtEctIon systEm

In this section, we present the LSTM-DDPG 
framework designed for intrusion detection for 
UAV-assisted RIS communication. To improve sig-
nal quality at the designated receiver and reduce 
the likelihood of eavesdropping, we employ the 
DDPG-LSTM framework within UAV-assisted RIS 
systems. This framework is specifically crafted to 
optimize security considerations, ensuring reliable 
communication within the domain of UAV-inte-
grated RIS communication systems, thereby effec-
tively preventing potential malicious threats.

The proposed LSTM-DDPG algorithm is outlined 
in Fig. 3, with distinct components such as actor and 
critic networks, both incorporating LSTM architec-
ture. Each network, actor, and critic, is composed of 
online and target counterparts. The actor-network 
employs the policy gradient method to derive a 
deterministic action based on observed environmen-
tal states. The critic network collaborates with the 
actor-network, employing a loss function to mini-
mize and accurately evaluate the actor-generated 
action through knowledge of the Q-function. To 
enhance training efficiency and stability, duplicate 
target actor and critic networks are employed. Addi-
tionally, a historical transition tuple is maintained in 
the experience replay buffer, from which a random 
mini-batch of transitions is selected to train the neu-
ral networks, effectively minimizing data correlation.

lstm-bAsEd Actor-crItIc nEtwork
The standard DDPG algorithm adheres to an 
actor-critic framework, consisting of an actor-net-
work and a critic network. In this configuration, 
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both the actor and critic networks employ fully 
connected deep neural networks (DNNs) to 
extract features from states and actions. Howev-
er, the shortcomings of fully connected DNNs 
become evident as they struggle to capture tem-
poral patterns inherent in environmental dynam-
ics, such as user mobility and the time-varying 
nature of UE tasks. This inadequacy results in inac-
curacies in state inference.

To address this limitation and better exploit 
the temporal patterns of states, allowing for con-
tinuous adaptation to environmental dynamics, 
we introduce the LSTM-based state characteriza-
tion layer within actor-critic networks. Serving as a 
modified type of recurrent neural network, LSTM 
incorporates a memory cell to capture long-term 
dependencies from input sequence data. Conse-
quently, LSTM has proven successful in handling 
various sequential tasks, including time series pre-
diction and translation.

To overcome this constraint and more effec-
tively leverage the temporal patterns inherent in 
states, facilitating continuous adaptation to envi-
ronmental dynamics, we propose the integration 
of an LSTM-based state characterization layer 
within actor-critic networks. Operating as a mod-
ified form of a recurrent neural network, LSTM 
incorporates a memory cell to capture long-term 
dependencies present in input sequence data. 
As a result, LSTM has demonstrated success in 
addressing a variety of sequential tasks, ranging 
from time series prediction to translation.

The hidden state at the last time step, derived 
from the LSTM layer, serves as the output and 
is directed into fully connected neural networks 
(dense layers). This process further extracts state 
features to achieve an effective fitting effect. Sub-
sequently, the actor-network employs output lay-
ers with different activation functions to generate 
corresponding policies. Finally, the results from 
these output layers are concatenated using the 
“” operator to produce the action.

The final hidden state obtained from the last 
time step through the LSTM layer functions as 
the output and is fed into fully connected neural 
networks, specifically dense layers. This step facil-
itates the extraction of state features, contributing 
to an effective fitting effect. Following this, the 
actor-network utilizes output layers with distinct 

activation functions to generate respective pol-
icies. Ultimately, the outcomes from these out-
put layers are combined using the “ ” operator to 
yield the final action.

pErformAncE EVAluAtIon
In this section, first, we discuss the environment 
setup of the UAV-assisted RIS communication net-
work. Then, we emulate the attacks and discuss 
the results.

uAV-AssIstEd rIs EnVIronmEnt sEtup
In the context of UAV-aided RIS-assisted com-
munications, our focus is to devise mechanisms 
that can effectively safeguard against various 
attacks such as Signal Nullification, Noise Injec-
tion, UAV-assisted RIS Link Exploitation Attack, 
and UAV Swarm Exploitation. To this end, we 
employ deep learning for detecting and coun-
teracting these attacks. Our approach begins 
with the design and execution of a testbed to 
emulate the potential attacks. This step involves 
manipulating the RIS and UAV systems to simu-
late various attacks, resulting in the creation of 
datasets containing both normal and attacked 
instances. This data forms the basis for training 
our machine-learning models.

In our simulation setup, we integrate the 
dynamics of Reflective RIS into our UAV-aided 
communication scenario. A user is modeled to 
move at a constant speed along a predefined 
trajectory, passing two eavesdroppers. A UAV, 
equipped with RIS, is available for relaying data 
from the base station to the user. These base sta-
tions are strategically placed at designated coor-
dinates. The RIS-augmented UAV follows the 
user’s path at an altitude of 20 meters, adjusting 
its reflective properties to optimize the commu-
nication link. We adopt an air-to-ground channel 
model that incorporates Line-of-Sight (LoS) sig-
nals, non-line-of-sight (non-LoS) signals, and mul-
tiple reflected components leading to multipath 
fading. The inclusion of RIS in this model is cru-
cial, as it adds a degree of freedom in signal prop-
agation, reflecting the incident signals from the 
UAV towards the legitimate user.

The secrecy rate, which serves as a measure 
of system confidentiality against eavesdropping, 
is calculated for the downlink along with cyber 

FIGURE 3. Proposed LSTM-DDPG Framework for Intrusion Detection in UAV-assisted RIS Communication.
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Figure 3. Proposed LSTM-DDPG Framework for Intrusion Detection in UAV-assisted RIS Communication

The actor-network employs the policy gradient method to
derive a deterministic action based on observed environmental
states. The critic network collaborates with the actor-network,
employing a loss function to minimize and accurately eval-
uate the actor-generated action through knowledge of the Q-
function. To enhance training efficiency and stability, duplicate
target actor and critic networks are employed. Additionally,
a historical transition tuple is maintained in the experience
replay buffer, from which a random mini-batch of transitions
is selected to train the neural networks, effectively minimizing
data correlation.

A. LSTM-based Actor-Critic Network

The standard DDPG algorithm adheres to an actor-critic
framework, consisting of an actor-network and a critic net-
work. In this configuration, both the actor and critic networks
employ fully connected deep neural networks (DNNs) to
extract features from states and actions. However, the short-
comings of fully connected DNNs become evident as they
struggle to capture temporal patterns inherent in environmental
dynamics, such as user mobility and the time-varying nature
of UE tasks. This inadequacy results in inaccuracies in state
inference.

To address this limitation and better exploit the temporal
patterns of states, allowing for continuous adaptation to en-
vironmental dynamics, we introduce the LSTM-based state
characterization layer within actor-critic networks. Serving
as a modified type of recurrent neural network, LSTM in-
corporates a memory cell to capture long-term dependencies
from input sequence data. Consequently, LSTM has proven
successful in handling various sequential tasks, including time
series prediction and translation.

To overcome this constraint and more effectively leverage
the temporal patterns inherent in states, facilitating continu-
ous adaptation to environmental dynamics, we propose the
integration of an LSTM-based state characterization layer
within actor-critic networks. Operating as a modified form of a
recurrent neural network, LSTM incorporates a memory cell to
capture long-term dependencies present in input sequence data.

As a result, LSTM has demonstrated success in addressing a
variety of sequential tasks, ranging from time series prediction
to translation.

The hidden state at the last time step, derived from the
LSTM layer, serves as the output and is directed into fully
connected neural networks (dense layers). This process further
extracts state features to achieve an effective fitting effect. Sub-
sequently, the actor-network employs output layers with dif-
ferent activation functions to generate corresponding policies.
Finally, the results from these output layers are concatenated
using the “⊕” operator to produce the action.

The final hidden state obtained from the last time step
through the LSTM layer functions as the output and is fed
into fully connected neural networks, specifically dense layers.
This step facilitates the extraction of state features, contribut-
ing to an effective fitting effect. Following this, the actor-
network utilizes output layers with distinct activation functions
to generate respective policies. Ultimately, the outcomes from
these output layers are combined using the ”” operator to yield
the final action.

V. PERFORMANCE EVALUATION

In this section, first, we discuss the environment setup of the
UAV-assisted RIS communication network. Then, we emulate
the attacks and discuss the results.

A. UAV-Assisted RIS Environment Setup

In the context of UAV-aided RIS-assisted communications,
our focus is to devise mechanisms that can effectively safe-
guard against various attacks such as Signal Nullification,
Noise Injection, UAV-assisted RIS Link Exploitation Attack,
and UAV Swarm Exploitation. To this end, we employ deep
learning for detecting and counteracting these attacks. Our
approach begins with the design and execution of a testbed to
emulate the potential attacks. This step involves manipulating
the RIS and UAV systems to simulate various attacks, resulting
in the creation of datasets containing both normal and attacked
instances. This data forms the basis for training our machine-
learning models.
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and physical features. It represents the difference 
between the data rate achieved at the legitimate 
user from the base station or RIS-enhanced UAV 
relay and the maximum rate achieved at the 
two eavesdropper nodes. The cyber feature rep-
resents the communication channels associated 
with RIS-aided UAVs, whereas, the physical fea-
ture represents the physical dynamic and control 
system features. 

rEsults
This section presents a comprehensive set of 
experiments aimed at assessing the efficacy of 
our proposed LSTM-DDPG framework. The pri-
mary focus is on addressing security concerns and 
ensuring reliable communication in the context 
of UAV-integrated RIS communication systems. 
These experiments are designed to effectively 
counteract potential malicious threats and vali-
date the robustness of the proposed approach.

We analyze the relationship between the aver-
age aggregate secrecy rate and the number of 
users in Fig. 4. The results show that our proposed 
LSTM-DDPG mechanism consistently surpasses 
all other algorithms, demonstrating superior per-
formance. It is clear that as the number of users 
increases, the LSTM-DDPG consistently outper-
forms alternative schemes in terms of secrecy 
rate. When compared to DDPG, deep reinforce-
ment learning (DRL), RL, and without RIS, our 
proposed scheme consistently exhibits higher lev-
els of secrecy. This highlights the inherent capa-
bility of the proposed algorithm to effectively 
safeguard sensitive information, even in scenarios 
with a larger user base. Specifically, the average 
secrecy rate of our proposed algorithm is 28%, 
35%, 45%, and 65% higher than DDPG, DRL, RL, 
and without RIS, respectively.

Figure 5 shows the average aggregate secrecy 
rate in relation to the quantity of reflecting ele-
ments. The outcomes reveal the efficacy of the 
proposed LSTM-DDPG method in comparison 
to various other machine learning algorithms. It is 
evident that, with an increasing number of reflect-
ing elements, the proposed algorithm consistently 
outshines alternative approaches in achieving a 
higher secrecy rate.

In addition, the various standard metrics for 
classification performance are employed to assess 
and contrast the models. These metrics encom-
pass accuracy, precision, recall, F1 score, and the 
area under the receiver operating characteristic 
(ROC) curve (AUC). Table 1 presents the classifica-
tion outcomes on crucial metrics for the proposed 
LSTM-DDPG framework in comparison to other AI 
models, including RL, DRL, and DDPG algorithms. 
The proposed framework consistently attains sig-
nificantly higher values for accuracy, precision, 
recall, F1-score, and AUC when compared to any 
individual base model across all metrics.

conclusIons And rEsEArch opputunItEs
In this article, we have highlighted potential vul-
nerabilities in UAV-assisted reconfigurable intel-
ligent surface (RIS) communication networks 
that could be exploited by malicious attackers. 
Threats such as signal cancellation attacks, pilot 
sequence poisoning, and beam management 
poisoning pose risks to the secure functionality 
of these systems. To address these concerns, 

we have proposed a long short-term memory 
deep deterministic policy gradient (LSTM-DDPG) 
framework for detecting and countering mali-
cious threats. Extensive experiments have demon-
strated the efficacy of LSTM-DDPG framework 
in improving security and enabling reliable com-
munications in UAV-RIS networks. Our approach 
introduces innovative machine learning solutions 
that outperform existing optimization techniques 
for this application.

As research on UAV-RIS communication sys-
tems continues, maintaining a focus on security 
will be crucial. The success of advanced machine 
learning techniques, like our LSTM-DDPG frame-
work, underscores their potential for addressing 
the complex security challenges in these emerg-
ing networks. Our work paves the way for future 
efforts on developing more sophisticated machine 
learning models and protocols to match the evo-
lution of threats targeting UAV-RIS systems. As 
this field continues advancing, research contribu-
tions like ours that prioritize reliability and integri-
ty will be vital. There are significant opportunities 
for impactful research on ensuring robust and 
secure UAV-RIS communications.

FIGURE 4. Average secrecy rate versus the number of 
users.
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In our simulation setup, we integrate the dynamics of
Reflective RIS into our UAV-aided communication scenario. A
user is modeled to move at a constant speed along a predefined
trajectory, passing two eavesdroppers. A UAV, equipped with
RIS, is available for relaying data from the base station to the
user. These base stations are strategically placed at designated
coordinates. The RIS-augmented UAV follows the user’s path
at an altitude of 20 meters, adjusting its reflective properties to
optimize the communication link. We adopt an air-to-ground
channel model that incorporates Line-of-Sight (LoS) signals,
non-line-of-sight (non-LoS) signals, and multiple reflected
components leading to multipath fading. The inclusion of RIS
in this model is crucial, as it adds a degree of freedom in
signal propagation, reflecting the incident signals from the
UAV towards the legitimate user.

The secrecy rate, which serves as a measure of system
confidentiality against eavesdropping, is calculated for the
downlink along with cyber and physical features. It represents
the difference between the data rate achieved at the legitimate
user from the base station or RIS-enhanced UAV relay and
the maximum rate achieved at the two eavesdropper nodes.
The cyber feature represents the communication channels
associated with RIS-aided UAVs, whereas, the physical feature
represents the physical dynamic and control system features.

B. Results

This section presents a comprehensive set of experiments
aimed at assessing the efficacy of our proposed LSTM-
DDPG framework. The primary focus is on addressing se-
curity concerns and ensuring reliable communication in the
context of UAV-integrated RIS communication systems. These
experiments are designed to effectively counteract potential
malicious threats and validate the robustness of the proposed
approach.

We analyze the relationship between the average aggregate
secrecy rate and the number of users in Figure 4. The results
show that our proposed LSTM-DDPG mechanism consistently
surpasses all other algorithms, demonstrating superior perfor-
mance. It is clear that as the number of users increases, the
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TABLE I
INTRUSION DETECTION AGAINST MALICIOUS THREATS.

Models
Accuracy
(%)

Precision
(%)

Recall
(%)

F1
(%)

AUC
(%)

RL 96.51 96.74 95.31 95.05 96.43
DRL 97.91 97.41 97.35 97.10 97.22

DDPG 98.71 97.45 97.48 97.85 98.73
LSTM-DDPG 99.10 98.84 98.61 98.22 99.11

LSTM-DDPG consistently outperforms alternative schemes in
terms of secrecy rate. When compared to DDPG, deep rein-
forcement learning (DRL), RL, and without RIS, our proposed
scheme consistently exhibits higher levels of secrecy. This
highlights the inherent capability of the proposed algorithm to
effectively safeguard sensitive information, even in scenarios
with a larger user base. Specifically, the average secrecy rate
of our proposed algorithm is 28%, 35%, 45%, and 65% higher
than DDPG, DRL, RL, and without RIS, respectively.

Figure 5 shows the average aggregate secrecy rate in relation
to the quantity of reflecting elements. The outcomes reveal the
efficacy of the proposed LSTM-DDPG method in comparison
to various other machine learning algorithms. It is evident that,
with an increasing number of reflecting elements, the pro-
posed algorithm consistently outshines alternative approaches
in achieving a higher secrecy rate.

In addition, the various standard metrics for classification
performance are employed to assess and contrast the models.
These metrics encompass accuracy, precision, recall, F1 score,
and the area under the receiver operating characteristic (ROC)
curve (AUC). Table I presents the classification outcomes
on crucial metrics for the proposed LSTM-DDPG framework
in comparison to other AI models, including RL, DRL, and
DDPG algorithms. The proposed framework consistently at-
tains significantly higher values for accuracy, precision, recall,
F1-score, and AUC when compared to any individual base
model across all metrics.

VI. CONCLUSIONS AND RESEARCH OPPUTUNITES

In this paper, we have highlighted potential vulnerabilities
in UAV-assisted reconfigurable intelligent surface (RIS) com-
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In our simulation setup, we integrate the dynamics of
Reflective RIS into our UAV-aided communication scenario. A
user is modeled to move at a constant speed along a predefined
trajectory, passing two eavesdroppers. A UAV, equipped with
RIS, is available for relaying data from the base station to the
user. These base stations are strategically placed at designated
coordinates. The RIS-augmented UAV follows the user’s path
at an altitude of 20 meters, adjusting its reflective properties to
optimize the communication link. We adopt an air-to-ground
channel model that incorporates Line-of-Sight (LoS) signals,
non-line-of-sight (non-LoS) signals, and multiple reflected
components leading to multipath fading. The inclusion of RIS
in this model is crucial, as it adds a degree of freedom in
signal propagation, reflecting the incident signals from the
UAV towards the legitimate user.

The secrecy rate, which serves as a measure of system
confidentiality against eavesdropping, is calculated for the
downlink along with cyber and physical features. It represents
the difference between the data rate achieved at the legitimate
user from the base station or RIS-enhanced UAV relay and
the maximum rate achieved at the two eavesdropper nodes.
The cyber feature represents the communication channels
associated with RIS-aided UAVs, whereas, the physical feature
represents the physical dynamic and control system features.

B. Results

This section presents a comprehensive set of experiments
aimed at assessing the efficacy of our proposed LSTM-
DDPG framework. The primary focus is on addressing se-
curity concerns and ensuring reliable communication in the
context of UAV-integrated RIS communication systems. These
experiments are designed to effectively counteract potential
malicious threats and validate the robustness of the proposed
approach.

We analyze the relationship between the average aggregate
secrecy rate and the number of users in Figure 4. The results
show that our proposed LSTM-DDPG mechanism consistently
surpasses all other algorithms, demonstrating superior perfor-
mance. It is clear that as the number of users increases, the
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TABLE I
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Models
Accuracy
(%)

Precision
(%)

Recall
(%)

F1
(%)

AUC
(%)

RL 96.51 96.74 95.31 95.05 96.43
DRL 97.91 97.41 97.35 97.10 97.22

DDPG 98.71 97.45 97.48 97.85 98.73
LSTM-DDPG 99.10 98.84 98.61 98.22 99.11

LSTM-DDPG consistently outperforms alternative schemes in
terms of secrecy rate. When compared to DDPG, deep rein-
forcement learning (DRL), RL, and without RIS, our proposed
scheme consistently exhibits higher levels of secrecy. This
highlights the inherent capability of the proposed algorithm to
effectively safeguard sensitive information, even in scenarios
with a larger user base. Specifically, the average secrecy rate
of our proposed algorithm is 28%, 35%, 45%, and 65% higher
than DDPG, DRL, RL, and without RIS, respectively.

Figure 5 shows the average aggregate secrecy rate in relation
to the quantity of reflecting elements. The outcomes reveal the
efficacy of the proposed LSTM-DDPG method in comparison
to various other machine learning algorithms. It is evident that,
with an increasing number of reflecting elements, the pro-
posed algorithm consistently outshines alternative approaches
in achieving a higher secrecy rate.

In addition, the various standard metrics for classification
performance are employed to assess and contrast the models.
These metrics encompass accuracy, precision, recall, F1 score,
and the area under the receiver operating characteristic (ROC)
curve (AUC). Table I presents the classification outcomes
on crucial metrics for the proposed LSTM-DDPG framework
in comparison to other AI models, including RL, DRL, and
DDPG algorithms. The proposed framework consistently at-
tains significantly higher values for accuracy, precision, recall,
F1-score, and AUC when compared to any individual base
model across all metrics.

VI. CONCLUSIONS AND RESEARCH OPPUTUNITES

In this paper, we have highlighted potential vulnerabilities
in UAV-assisted reconfigurable intelligent surface (RIS) com-

TABLE 1. Intrusion detection against malicious threats.

Models Accuracy (%) Precision (%) Recall (%) F1 (%) AUC (%)

RL 96.51 96.74 95.31 95.05 96.43 

DRL 97.91 97.41 97.35 97.10 97.22

DDPG 98.71 97.45 97.48 97.85 98.73

LSTM-DDPG 99.10 98.84 98.61 98.22 99.11
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