
IEEE TRANSACTIONS ON MOBILE COMPUTING (2020) 1

UAVs Path Planning by Particle Swarm
Optimization based on Visual-SLAM Algorithm

Umair Ahmad Mughal, Ishtiaq Ahmad, and KyungHi Chang, Senior Member, IEEE

Abstract—Unmanned Aerial Vehicles (UAVs) have gained tremendous popularity due to its high mobility in various robotics platforms.
We use a state-of-the-art visual simultaneous localization and mapping (VSLAM) method to trace the UAV poses while simultaneously
constructing an incremental and progressive map of the surrounding environment. In this regard, a single UAV is first used to compose
a map of the region of interest by utilizing the monocular vision-based approach. The constructed map is processed as an input mean
for the optimization algorithm to plan multiple UAVs’ optimum paths. We design a path planner based on particle swarm optimization
(PSO) and propose a path updating mechanism based on region sensitivity (RS) to avoid sensitive areas if any hazardous events are
detected while executing the final path. Moreover, we propose a dynamic fitness function (DFF) to evaluate the path planner’s planning
strategy considering various optimization parameters such as flight risk estimation, energy consumption, and operation completion
time. The proposed planner attains the high fitness value and reaches the destination safely following the shortest path while avoiding
all the unexpected hazardous events and restricted areas, which validate the effectiveness of our proposed PSO-VSLAM system as
depicted by the simulation results.

Index Terms—Visual-SLAM, PSO, Path Planning, Autonomous Aerial Vehicles, UAV

F

1 INTRODUCTION

AN autonomous aerial vehicle’s ability to navigate in
an unrecognized environment while simultaneously

constructing a progressive map and localizing itself is a
significant field of study in robotics. Research has been con-
ducted on simultaneous localization and mapping (SLAM)
due to its real-life practical applications [1]. The advance-
ments in vision-based SLAM techniques estimate the robot’s
state and build a map as it moves around the terrain [2].
Many SLAM systems in the literature use multiple het-
erogeneous sensors such as Laser Range Finders (LRF), an
inertial measurement unit (IMU), a GNSS receiver, a mag-
netometer, an optical flow sensor (OFS), a barometer, and
a Light Detection and Ranging (LiDAR) [3], [4]. However,
in recent years, single-camera SLAM systems have become
very popular due to its light weight, low cost, and variety of
applications in complex environment [5] [6]. In this respect,
monocular visual-SLAM has been acknowledged vastly for
UAVs’ applications in enabling the fully autonomous sys-
tem without the support of external positioning systems in
various complex situations.

In particular, UAVs play a vital role in various civil
applications due to their high-mobility, low maintenance
cost, and ease of deployments. UAVs are widely being used
for traffic monitoring, health services, search and rescue, se-
curity and surveillance, and delivery of goods [7]–[9]. Simi-

• U. A. Mughal is with the Department of Electrical and Computer
Engineering, Inha University, Incheon, South Korea, 22212.
E-mail: umairm9552@gmail.com

• I. Ahmad is with the Department of Electrical and Computer Engineering,
Inha University, Incheon, South Korea, 22212.
E-mail: ishtiaq001@gmail.com

• K. H. Chang is with the Department of Electrical and Computer Engi-
neering, Inha University, Incheon, South Korea, 22212.
E-mail: khchang@inha.ac.kr
(Corresponding author: K. H. Chang)

larly, UAVs are also being taken as an enabler in the wireless
communication network for public safety. While operating
as a base station, UAVs provide excellent connectivity to
the terrestrial base station to boost the wireless network’s
coverage, capacity, and efficiency [10]. Since all applications
of the UAVs are dependent on path planning, therefore,
it should be very accurate to fulfill the requirements of
the application, as mentioned earlier. Consequently, it is
inevitable.

Path planning algorithms are designed to achieve the op-
timal trajectory within a particular set of constraints (terrain
constraints, collision avoidance, etc.) and objectives (energy
consumption, flight risk, etc). Generally, UAVs fly through
complex terrain. Hence, path planning is not only concerned
with constraints and multiple objectives but also includes
dealing with hazardous events that can happen suddenly
on the path of the UAV. Therefore, we introduce region
sensitivity (RS) to counter unconditional threats, enabling
the UAV to sense an unstable region and optimize its path
to reach the destination. This paper introduces a framework
for optimal path planning based on maps created by the
monocular-vision approach. A state-of-the-art visual-SLAM
(VSLAM) algorithm tracks the camera’s pose while simul-
taneously building an incremental map of the surrounding
environment. The generated map is processed and serves as
input to an optimization algorithm.

Particle swarm optimization (PSO) has been regarded
as an efficient means of planning an optimum path. In the
PSO framework, the particle is viewed as an integrated
individual, representing a candidate solution. Thus, the
global best particle is determined by the performance of all
the particles. So, the best one selected from all the particles
may not indicate that each particle’s dimension is also the
best. For example, with a particle located in D-dimensional
space, most of the D dimensions have an excellent effect on

IEEE TRANSACTIONS ON MOBILE COMPUTING (2020) 2

the optimal problem. Still, others possibly perform with a
low influence on the result. Suppose that a specific particle
considered as a whole is selected as the best particle to
participate in the iterative process. In that case, the standard
PSO algorithm’s search efficiency and solution accuracy will
be restricted and decreased. When a particle represents a
candidate path to solve the path planning problem, the PSO
planner evaluates the candidate path by considering the
whole path’s quality instead of a single waypoint.

Compared to other metaheuristic search algorithms PSO
framework has more simplicity in implementation and has
less computational time. Moreover. it has more ability to
solve nonlinear problems as compared to other heuristic
algorithms like ant colony optimization (ACO), Genetic
algorithm (GA), an evolutionary algorithm (EA). The GA
is having an expensive computational cost because it is
inherently discrete, i.e., it encodes to design the discrete
variables, while the PSO is inherently continuous and can
be modified easily to handle the discrete design variables.
Therefore, we adopt PSO as it converges quickly in a dy-
namic environment.

1.1 Main Contributions
This paper aims to develop a system that derives the optimal
paths for multiple UAVs to reach their destinations, even
in a GPS-denied environment safely. We designed a two-
step centralized system based on visual-SLAM to construct
an incremental and progressive map of the surrounding
environment. The constructed terrain map in the form of
a points cloud is used as an input mean to the proposed
multiple-path UAVs optimization planner. We implement
the Canny and Harris detector simultaneously to stabilize
the system in the least textured environment.

We proposed a dynamic fitness function (DFF), which
contains multiple optimization indexes, such as flight
risk estimation, energy consumption, operation completion
time, and numerous constraints i.e. UAV constraints, which
take care about the physical limitations of the UAVs, and
environmental constraints to care about surrounding condi-
tions, as a joint cost determinant, to plan the optimum path
for multiple UAVs to reach the destination safely. We have
also proposed a path-updating mechanism based on the
RS to counter the unexpected hazardous events, enabling
the UAV to sense an unstable region and optimize its path
accordingly.

The proposed optimization planner utilizes the PSO to
compute each path’s fitness based on the RS and DFF.
Considering all the aspects, make our proposed approach
more practical in path planning for multiple UAVs.

1.2 Related Work
Research has been conducted in underwater, indoor, and
outdoor environments using SLAM and PSO technology. In
[11], the authors utilize active SLAM for robot path planning
based on the deep reinforcement learning. The obstacle in
the path are detected using the convolutional residual net-
work. The proposed scheme uses Dueling DQN algorithm
for obstacle avoidance, and at the same time, building the
2D map of the surrounding using the FastSLAM. Similarly,
in [12] authors also use stereo vision-based active SLAM

to localize, navigate, and define its surrounding environ-
ment. The cognitive-based adaptive optimization algorithm
introduces to avoid the obstacles and complete the task
effectively. In [11], [12] the main focus of the approaches
is to the complete robot task while detecting and avoiding
the obstacle in the environment.

The author in [13] proposes a visual-SLAM approach to
construct the incremental map of the terrain for surveillance.
The author introduces the Cognitive-based Adaptive Op-
timization (CAO) algorithm for path planning. The multi-
robot system designed in [13] concentrates only on explor-
ing the surrounding environment, and the robot team’s
arrangement is an optimization objective. The author did
not consider the terrain limitation and other aspects of the
environment. In contrast, we consider the environmental
and physical limitations of the UAV as optimization param-
eters.

The monocular-inertial SLAM for path planning has
been proposed in [14]. The author proposes the path plan-
ning algorithm, which works in the SLAM estimation loop
for a vision-inertial system. The designed keyframe-SLAM
system fuses the monocular camera’s sensing cues and
cues taken from the Inertial Measurement Unit (IMU). The
authors only inspect the feasibility of their proposed work
irrespective of considering the environmental and UAV
physical challenges.

In [15], authors introduce PSO algorithm for a network
of UAVs for the exploration task in a disaster scenario. The
modified version of the PSO called dynamic-PSO for UAVs
network (dPSO-U) propose to discover the disaster areas.
Particularly, the UAVs follow the delay tolerant (DTN) net-
working approach for sharing the information. The solution
works only to evaluate the best value combinations of the
UAVs for effectively exploring the scene.

In [16], a team of UAVs is used to enhance the commu-
nication services and provide the best coverage followed by
the 5G network. The UAVs act as bridge between the cellular
base station and the users. The main focus of the designed
approach is to locate the UAVs at the optimum position to
maximize the communication coverage ratio. The authors
propose per-Drone Iterated PSO (DI-PSO) scheme based on
PSO algorithm, in which PSO is utilized to calculate the
optimum position for each drone. However, the PSO design
in approach individually evaluates the optimum position
for each UAV, while in our approach, a UAV behaves as a
PSO particle.

In [17], a team of UAVs use to perform the fire fighting
task in a forest. The target spots are considered to be known
before the mission start. The UAVs were assigned to the
different fire spots using the auction-based algorithm. After-
wards, UAVs use the centralized PSO algorithm along with
parametrization and time discretization (CPTD) algorithm
to calculate the optimal trajectories towards the assigned
fire spots. However, our algorithm is not centralized but
distributed. Each UAV works as an individual body of the
UAV network, providing the UAV facility to set its own
rules to carry out the task. If one of the UAVs face a failure,
the mission goals can still be performed.

In [18], an improved PSO algorithm is introduced for
the real-time path planning of a single UAV. The work falls
in the category of the low-level trajectory planning as it

IEEE TRANSACTIONS ON MOBILE COMPUTING (2020) 3

include to avoid the moving obstacle. There are mainly
two improvements: (i) an adaptive strategy, which adjusts
the inheritance parameters of the PSO algorithm (inertia,
local and global best) to magnify the searching capability
of the PSO algorithm; (ii) a chaos optimization mechanism,
which increases the ability of the PSO algorithm to escape
from the local maxima. However, the approach considers
only a single UAV, and PSO implementation is used only to
evaluate the trajectory following parameter of the PSO. This
means the approach does not work for the multiple UAVs
trajectories we propose in our algorithm.

Most relevant to this paper is the proposed Next-Best-
View Planner (NBVP) [19]. It uses the RRT approach inside
the planning loop. The visual data retrieve from the depth
sensor using a tree node. While planning, the small segment
of the best view is executed in each iteration, which allows
adapting the trajectory towards the plan between the itera-
tions as a new explored map. However, obtaining the best
view from the RRT is a costly step, and it merely does proper
scaling with the tree size.

Comparing with the work mentioned earlier, some au-
thors use only SLAM technology for path planning [12]
while some use only PSO algorithm for this cause [13-
16]. Some use SLAM technology to combine optimization
algorithms and other path planning mechanisms [9-11].
However, no work in the literature has done using SLAM
and PSO for the multiple UAVs path planning. Moreover,
they only focused on their approach’s feasibility in all
related work irrespective of the environmental constraints
and UAV physical limitations. Therefore, considering the
practical scenario, we have designed a system reflecting
all aspects combining both VSLAM and PSO. Some of the
environmental and physical traits of the surrounding have
been studied in our previous work [20]. However, there
are several challenges to be resolved; in this regard, we
introduce dynamic fitness function (DFF), which includes
multiple optimization parameters to take care of environ-
mental constraints like terrain limitation, restricted area,
collision avoidance, flight risk, Etc., similarly, UAV physical
limitations like turning angle, flight slope, Etc. Moreover,
we propose the region sensitivity (RS) to encounter any
unexpected hazardous event in the UAV path. The proposed
DFF and RS work in the optimization algorithm by feeding
the realistic environment’s information using a monocular
vision-based SLAM approach.

1.2.1 DIFFERENCES IN SYSTEM METHODOLOGIES IN
THE LITERATURE
The major differences in the system methodologies of the
state-of-the-art contributions. In [21], the authors proposed
the improved PSO (IPSO) for path planning of a robot. The
authors study three approaches PSO, artificial potential field
(APF), IPSO in two different environmental setups. Both
setups have fixed obstacles and goal of the study is to avoid
the obstacles. The major difference to our approach is that
we have proposed the DFF considering the multiple opti-
mization indexes. Moreover, our environment is dynamic
and any unexpected event can happen. We proposed the
RS mechanism to deal with it. Similarly, the input feeding
in our approach is from the realistic environment using
the Visual-SLAM approach while the study in [21] utilizes

the equation for input information. In [22], the authors
proposed the adaptive selection mutation constrained dif-
ferential evolution algorithm to solve the UAV path plan-
ning in a disaster environment. The input environmental
setup is different from our approach. The major difference
to this study is the use different optimization indexes to
measure the fitness value to reach the optimum solution.
In [23], the author proposes the reference point-based multi-
objective evolutionary algorithm for the UAV path planning.
In this study, the UAV visits all the targets and return to
the base while being monitored by the radar. The goal is
to the minimizing the radar threat in a continuous terrain
which is a different approach. Similarly, the author in [24]
proposed hybrid grey wolf optimization approach for the
UAV path planning. The authors identified the cost function
as a weighted sum of threat cost, fuel cost, and cost offered
due to deviation, which is a different from our joint cost
determinant. Different philosophies and goals of the system
designs in the literature [25] resulted in different system
parameters.

2 VISUAL-SLAM FRAMEWORK

Vision-based SLAM systems mostly work on the corner
features detector, for instance, Harris corner detector. The
corner points are easily distinguishable so that the data as-
sociation for the corner detector is relatively easy to extract.
However, in non-textured environment, the corner detector
is not able to detect the sufficient feature points. To address
this problem, we introduce the fused mechanism of corner-
edge points which utilize the edge points as well. The point
detected on the edge segment termed as edge-point. Our
method detect the corner as well as edge points to estimate
the position of the camera by matching the 3D points of the
next image. In this way, the trajectory of the camera and a
3D map are built.

It provides robustness for the estimation process due to
large number of points detected even in the non-textured
condition. It detect the edge point in case of long edge
segments which are hard to detect. In addition to robust-
ness, it provides the detailed representation of the object
which increase the modeling process of surface detection
and reconstruction.

2.1 Approach

Correspondence between the points may lead to multiple
matches, including outliers. Random sampling consensus
(RANSAC) [26] handles inliers, outliers, dividing data using
perspective projection [27].The large matching errors are
eliminated by the progressive sample consensus PROSAC
algorithm [28]. The motion of the camera and correspon-
dence of the points between the frames occur simultane-
ously. In the beginning, we estimate the trajectory of the
camera with small detected points, and afterwards, we
use a coarse-to-fine approach to refine the trajectory and
feature point correspondence by progressively increasing
the points. The overall approach to constructing a map using
the visual-SLAM system can be seen in Figure 1.

IEEE TRANSACTIONS ON MOBILE COMPUTING (2020) 4

2.1.1 KEYPOINT MATCHING
Keypoint matching is an essential operation in most
computer-vision applications, encompassing Structure from
Motion (SfM), Multi-view Stereo (MvS), image registration,
and image retrieval. The process starts with the detection
and description of keypoints and continues to the keypoint-
matching. The detection step searches the locally distinc-
tive and adequate keypoints, which can be easily observed
(uniqueness) and easily detected in different images frame
(reliability). The descriptor is usually a multi-dimensional
vector that represents the detected keypoints in space. Fi-
nally, the descriptor in one image searched the approxi-
mate nearest neighbor descriptor in every other overlapping
image and matched them. Therefore, the matched points
indicate the keypoint in the image, which is projected onto
the corresponding two images taken from the two differ-
ent viewpoints. blueWe initially utilize features from the
accelerated segment test (FAST) to determine the keypoints.
Afterward, the edge points are detected utilizing the pop-
ular Canny edge detector [30] and Harris Corner detector
[29]. The criteria for matching around the edge points is a
normalized, small correlated window. The outliers are elimi-
nated by the orientation of the gradient at the edge using the
robust independent elementary features (BRIEF) descriptor.
As they have the nominal computational complexity and
more accuracy than other detectors and descriptors [31]. The
keypoint matching with respect to scaling the image. The
highest rate of matching is given by the ORB, which is a
combination of FAST and BRIEF, is 49.5% in 0.02 second
while least rate is noticed by the SIFT i.e. 31.8% in 0.25
second, while the SURF gives rate of 3.6.6% in 0.08 second.

2.1.2 KEYPOINT RECONSTRUCTION
A 3D point from consecutive images is calculated using the
following equation:

Pe = (
b(x1 + xr)

2(x1 − xr)
,

by

(x1 − xr)
,

bf

(x1 − xr)
)T (1)

where b indicates baseline, and f is the focal length,
y=y1=yr , while (x1, y1) represents the points on one image,
and (xr , yr) represents the point on the consecutive next
image. We set u = (x1, y1, xr, yr) and Pc = S(u) , and
therefore, the covariance of the edge point (Pc) is calculated
as

ΣPe
=
δS

δu
Σu

δST

δu
(2)

Now, we assume Σu = diag(σ2
x1
, σ2

yr
, σ2

yr
) and, for the

implementation, we take σxr = σy1 = σyr = 0.5[Pixels].
The correlation between σy1andσyr is assumed to be very
strong.

2.1.3 CAMERA MOTION ESTIMATION
The trajectory of the camera can be estimated by success-
fully matching the points from time t-1 to t when the points
are reconstructed in frame It−1, and the points are detected
at frame It. There are two methods for point registration.
One is a 3D–3D method for point matching in which the
reconstructed 3D points up to frame It − 1 are taken and
matched with the 3D points reconstructed at frame It. The

other method for point registration is 3D–2D matching in
which the reconstructed 3D points up to frame It − 1 are
taken and matched with the detected 2D points in frame It.
The latter method has mostly been taken in the literature,
because the influence of the depth errors in registration
accuracy is very small, which makes it more stable [33].
Let vt be a camera pose at time t, where P i

t−1 is a i-th
reconstructed 3D point at t − 1. Similarly, pit−1 is a point
that was taken as a projection of P i

t−1 on the image at
It. The point P i

t−1 is termed a map point because it is
stored for map generation, and therefore, point pit−1 can
be represented as pit−1 = k(P i

t−1, vt), where k indicates the
function of perspective projection:

K = N−1t (P i
t−1 −Mt)

k(P i
t−1, vt) = (f

Kx

Kz
, f
Ky

Kz
)T

(3)

where Mt and Nt are the translation and rotation matrices
of vector vt. Let git is a point on the image corresponding to
pit−1, so the cost function, C, can be defined as

C(vt) = Σn
i=1q(g

i
t, p

i
t−1) (4)

where q(git, p
i
t−1) represents the penalty that depends on

the Euclidean distance between points git and pit−1. We use
the perpendicular distance between the point pit−1 and the
segment containing the point git in image [33]. We estimate
the motion using pose vector vt at time t, and the corre-
spondence between the points from decreasing cost function
C(vt). This can be achieved by utilizing the gradient descent
method, setting the initial value of vector vt to vt − 1, and
setting closest point git to its closest corresponding point,
pit−1, by calculating the Euclidean distance. This process
of point matching repeats, which decreases C(vt), and the
optimal pose vector vt, and thus, point correspondences are
achieved.

2.1.4 MAP CONSTRUCTION
We build an incremental 3D map of the environment based
on camera pose vector vt by transforming the 3D points
into world coordinates from the camera coordinates. Let us
take the camera coordinates and P i

e as the i-th 3D point, so
the location of this point in the camera coordinates can be
represented as follows:

P i = c(P i
e , vt) = NtP

i
e +Mt (5)

We integrate the identified 3D points based on their
correspondences, which decreases the depth error. Based on
the covariances, we integrate the location of all the identified
3D points. We take the average location of the identified
3D points between the keyframes, which increases the effi-
ciency. The created 3D points indicate the map, and estimate
the trajectory of the camera, between the keyframes.

2.1.5 CAMERA MOTION UPDATE
Camera motion is updated by extracting the keyframe from
the sequence of images with interval d, and then, we re-
fine the motion using the RANSAC algorithm between the
keyframes. As can expected, the camera motion is relatively

IEEE TRANSACTIONS ON MOBILE COMPUTING (2020) 5

Discard the non key-frame &

start tracking for the next key-

frame

If current frame is a key

frame

Loop

detection

No
- Update the recognition database

- Process next frame

Map Initialization

Camera
Image input

Tracking

- Key features extraction

- Key frames selection

- Matching feature points strategy

- Relative camera pose estimation

- 3-D position and direction

- 3-D into 2-D map points projection correspondence

Update map

Pose EstimationLocal Mapping

Keypoint matching

Last keyframe Keyframe

Triangulating the

feature points

New landmarks

Bundle adjustment to minimize

the reprojection errors

Point correspondences

without outliers

Keypoint matching

Keypoints

correspondences

P3P with RANSAC

EPnP

Yes

 Map

Input image

Image feature points detection in a circle of n radius

for consecutive N points using FAST and Canny

algorithm.

Feature point screening by Harris Response for the

FAST corner points to take the first N points.

PROSAC algorithm to eliminate the matching pairs

with large matching errors.

Descriptor generation for feature points using Steer

BRIEF algorithm.

Recognition of features points direction using the

intensity centroid method

Based on descriptor similarity by calculating the

Euclidean distance between two equal length strings.

Building an image pyramid and adding scale

invariant to the feature points.

Fig. 1. Flowchart of map construction using Visual-SLAM.

large between the keyframes, so to avoid the local min-
ima, we initialize the value of a keyframe to Id from the
estimated camera motion by each keyframe It + 1. Every
3D point P i

t−d taken upto keyframe It−d is supposed to
project onto keyframe It and match to the 3D point qit in
the image. Errors exist due to accumulation between the
keyframes, which are reduced using the bundle adjustment,
and therefore, the keyframe significantly converges to the
global minima to update the motion of the camera in terms
of 3D points.

Uncertainty is evaluated by calculating the covariance
matrix of camera poses. We use vt and Σvt to represent
the mean and covariance, in which vt is calculated from
the keyframe, whereas Σvt is calculated with the following
mechanism. Let st represents the vector of multiple points
in the image at time t where wt indicates the vector of 3D
points, which are matched with st. We can indicate st as
st = h(wt, vt) +nt, where nt is noise having zero mean and
zero covariance, Σnt, and st can be obtained with the Taylor
expansion, as follows:

st ≈ k(wt, vt) +
δk

δwt
(wt − wt) +

δk

δvt
(vt − vt) + nt (6)

We can calculate the covariance of camera trajectory utiliz-
ing equation 6, as follows:

Σvt = (JT
vt(Σnt + JwtΣwtJ

T
wt)
−1Jvt)

−1

Jvt =
δk

δvt
(wt, vt), Jwt =

δk

δwt
(wt, rt)

(7)

where Σwt represents the covariance matrix of the 3D points
that match st. The size of the Σwt depends on the number of
3D points and if the number of points is large, which makes
Σwt computation intractable.

To deal with this problem, we ignore the correlation
term in Σwt to simplify the computation. One interpre-
tation is to ignore the correlation entity in Σwt so that
the location of all the 3D points are independent of one
another. But this interpretation marks the covariance as very
small. Therefore, we assume that the location of all the 3D
points that are reconstructed from the same frame have a
strong correlation. To overcome the complexity, we divide
all 3D points into two parts, wa and wb, where wa indicates
the 3D points reconstructed from the last keyframe, It−d,
and wb represents the reconstructed 3D points from the
past keyframes, I1 to It−2d. This is assumed based on the
fact that all the 3D points are generated in the very last
keyframe, more specifically It−2d+1 to It−d. In the same
flow, we again assume that 3D points in the same group
have a strong correlation in their locations, while 3D points

IEEE TRANSACTIONS ON MOBILE COMPUTING (2020) 6

in separate groups have zero correlation in their locations. In
this, we can approximate each group covariance to the mean
covariance of all 3D points. Considering all the assumptions,
we have the following:

JwtΣwtJ
T
wt =

1

|wa|
∑

P∈wa

JP ΣPJ
T
P +

1

|wb|
∑

P∈wb

JP ΣPJ
T
P

JP =
δk

δP
(P , vt)

(8)

where JP and ΣP represent the Jacobian and covariance ma-
trix of a 3D point, respectively. This supposition decreases
the computational complexity of the system.

2.1.6 MAP UPDATE
We construct the 3D map according to section 2.1.4. We
fuse the matched 3D points with weights according to their
covariances. The 3D point explained in section 2.1.4 can also
be expressed as

P i
t = c(P i

e,t, vt) (9)

As mentioned above, we are ignoring correlation term
Σwt,and therefore, we calculate the covariance matrix of
each 3D point. Let P

i
t and ΣP i

t
represent the mean and

covariance of a 3D point, respectively. Using the Taylor
expansion, we have the following:

P i
t ≈ c(P

i
e,t, vt) +

δc

δP i
e,t

(P i
e,t − P

i
e,t) +

δc

δvt
(vt − vt) (10)

The covariance of 3D point P i
t can be calculated using

equation 10 as follows:

ΣP i
t

=
δc

δP i
e,t

ΣP i
e,t

δc

δP i
e,t

T

+
δc

δvt
Σvt

δc

δvt

T

(11)

We update the location and covariance of a 3D point by
fusing equation 11 with the point at t− d, as follows:

P
i
t = P

i
t−d + ΣP i

t−d
(ΣP i

t−d
+ ΣP i

t
)−1(P i

t − P
i
t−d)

ΣP i
t

= (Σ−1
P i

t−d
+ Σ

−1
P i

t
)−1

(12)

3 SWARM-BASED PATH PLANNING APPROACH

In this section, we introduce the proposed path planning
scheme based on particle swarm optimization. The elevation
map generated by the visual-SLAM algorithm is used as
input terrain information for the optimization algorithm to
plan the optimum path. The data set we used in our system
is very diverse, and provides information on the terrain.
There are multiple system constraints, which must be satis-
fied before planning the path from source to destination and
meeting the multiple objectives we desire in order to obtain
the maximum value. In this regard, we propose the DFF to
derive the optimal trajectory of the UAVs while considering
all the constraints and objectives of the system.

Initialize the parameters

Compute constraint functions value

Compute objective function value

Compute the fitness functions value

Output the fitness value of the

particle

Calculate Nw=8

For i=1:Nw

Nw=8 ?

YES

NO

Fig. 2. Flowchart to compute dynamic fitness function

3.1 Working Principle of Particle Swarm Optimization

PSO is a heuristic search algorithm. It was first developed
by Kennedy and Eberhart in 1995 to introduce a method
for optimization of a nonlinear function [35]. PSO has been
regarded as one of most effective optimization techniques.
It is a nature-inspired set of computational methodologies
to resolve complex real-world problems. PSO executes the
search mechanism using a swarm of particles that update
iteratively to seek the optimum solution. Each particle
moves in accordance to its previous best particle in the
group, as well as the global best particle in the swarm.
Each particle updates its velocity and position according to
information received from the previous velocity and best
position achieved by any particle in the group, and the best
position achieved by the global swarm.

3.2 PSO Formulation

The mathematical formulation for each particle’s velocity
and position are stated as follows. Let the total number of
particles in a swarm be P, the total iterations is N, and the
3D dimension of each particle is D. Therefore, for the ith

particle, position x and velocity v can be represented as:

xi = (xi1, xi2,, xiD)

vi = (vi1, vi2,, viD)
(13)

The position for the best particle, pi,best, in the group
and the global best swarm particle, sbest, can be computed
as follows:

IEEE TRANSACTIONS ON MOBILE COMPUTING (2020) 7

pi,best = (pi1,best, pi2,best,, piD,best)

sbest = (s1,best, v2,best,, vD,best)
(14)

Because pbest and sbest are termed cost values for PSO,
once a cost function is defined, then the position and veloc-
ity are updated as follows:

xt+1
ij = xtij + vt+1

ij

vt+1
ij = χvtij + ar1(pij,best − xtij) + br2(sj,best − xtij)

for i = 1, 2, 3, ..., P j = 1, 2, 3,, D t = 1, 2, 3, ..., N
(15)

where a and b are the self-cognitive acceleration property
and the social knowledge parameter of the swarm, re-
spectively, which represent the inheritance characteristics
of the personal particle and the whole swarm; r1 and r2
are random values in the range [0-1], and χ represents the
inertia of an individual particle, which induces an effect on
the velocity from one iteration to next iteration. The authors
in [36] suggested optimum values of a = b = 1.496 and
χ = 0.7298 for PSO performance.

4 PROPOSED DYNAMIC FITNESS FUNCTION

In order to derive the optimal trajectories, the DFF computes
the fitness of the trajectory considering optimization param-
eters, which are divided into two groups, namely, objec-
tives and constraints. The former consist of risk estimation,
energy consumption, and operation completion time; the
latter are further divided into two parts depending upon the
UAV’s physical constraints (flying slope and turning angle)
and the physical limitations of the environment (region
sensitivity, restricted areas, and terrain constraints). The
working flow of the DFF can be observed in Figure 2. The
DFF can be formulated as seen in equation :

DFFfitness = Fobjectives + Fconstraints (16)

where Fobjectives indicates the objectives function on which
we focus to gain the maximum value, whereas Fconstraints

indicates the UAV physical and environmental restrictions,
which must be fulfilled before planning the trajectory.

4.1 Objectives Design
We have defined the above optimization parameters, and
the objectives were designed to improve the quality of
path planning. We have defined the objectives as weighted
components of risk estimation, energy consumption, and
operation completion time so that the formulation of the
objectives can be represented as follows:

Fobjectives = w1ORE + w2OEC + w3OOT (17)

where w1, w2, w3 denote the weights of the objective
components [34], which are chosen to derive the impor-
tance of each component while planning the path, and
ORE , OEC , OOT are functions from which values are taken
in the range [0,1]. We aim to derive the optimum path with
less risk, energy, and time.

Set iteration Value=iter

Set particle number

Initialize the positions and speed of each particle

Compute fitness of each particle using

Update optimal position for each particle

Update the global swarm optimal position

Compute next position and velocity based on updating formulas

Iteration value =iter ?

YES

Output optimal path for single UAV

fitnessDDF

ix iv

NO

Satisfying CA ?

Yes

NO

For UAV =1:n

Output final planning path for each UAV

ip

sp

Fig. 3. Framework of the path planner

4.1.1 RISK ESTIMATION
There are some restrictions that should be applied during
flight. Small UAVs are very vulnerable to harsh weather
conditions, like rain, snow, or strong winds, which can
pose a high risk of damage to the UAVs. Similarly, the
UAV altitude while executing the task should be reasonable,
because at a higher altitude, the wind is stronger, which can
increase the risk. Moreover, the camera sometimes cannot
focus properly due to dense clouds that also put the UAV at
risk. On the basis of the above risk situations, we define the
following two types of risk.

4.1.1.1 Environmental Risk : The environment has a
wide range of characteristics, and therefore, it is difficult to
make a model that precisely measures the environmental
risk. Therefore, for simplicity, an environmental value is
generated randomly, rei,i+t, that represents the risk from the
i− th waypoint to waypoint (i+ 1). The summation of the
risk values would be considered the environmental risk.

4.1.1.2 Altitude Risk : The altitude risk is actually
an absolute difference in altitude between two waypoints,
and therefore, we formulate altitude risk rai,i+t as follows:

rai,i+t = k ∗ (zi+1 − zi) (18)

IEEE TRANSACTIONS ON MOBILE COMPUTING (2020) 8

Algorithm 1 Pseudocode of proposed UAVs Path Planner

1: Set flight time =
flightT ;

2: Initialize the cell values;

3: for i = 1:
flightT

4: {

5: while (CA is not satisfied)

6: {

7: Set UAV number= N ;

8: for j = 1: N

10: Set iteration number=
iterN ;

11: Set particle number=
nP ;

12: for k =1:
iterN

13: {

14: for t =1:
nP

15: {

16: Randomly initialize tx and tv ;

17: Initialize
,t bestP = tx ,

bestS =
nPx ;

18: Update tx and tv using the updating formula (15);

19: Compute the fitness value of tx using formulas (16)-(39);

20: if (
,() ()t t bestfitness x fitness P)

21: {
,t bestP = tx ;}

22: if (
,() ()t best bestfitness P fitness S)

23: {

24: bestS = ,t bestP ;

25: _ ()bestOpt fitness fitness S ;

26: }

27: Sense the sensitive region using formula (36);

28: if (RS(i)<RS(th))

29: _ ()bestOpt fitness fitness S ;

30: else

31: return to step 19;

32: }

33: }

34: Evalution collision among multi-UAVs using formula (40);

35: }

36: Output the collision-free trajectories for multiple UAVs

37: }

38： Output flightT flight time path planning results;

Fig. 4. Pseudocode of the proposed path planner

where k represents a constant parameter for control. Since
risk estimation depends on the location, and it increases
or decreases according to the weather conditions at that
particular location, as well as on the UAV’s altitude at the
same time during flight. Therefore, the total risk can be
formulated as follows:

ORE =

∑Nw−1
i=1 REi

maxRE
(19)

REi = wERr
e
i,i+t + wARr

a
i,i+t

where wER + wAR = 1
(20)

REi shows the total risk from the i-th waypoint to
waypoint (i + 1)), while wER and wAR are the weight
factors of the environmental and altitude risks, respectively.
Nw denotes the total number of waypoints from source to
destination, and maxRE is a normalized value of the risk,
which can be computed as follows:

maxRE = (Nw − 1) ∗ [wER ∗ Z ∗ wAR(2 ∗maxre)] (21)

where maxre indicates the maximum value instigated by
the environment risk, and Z is the altitude of the UAV
during flight.

4.1.2 ENERGY CONSUMPTION

Fuel plays a pivotal role for UAVs while executing their
tasks. Therefore, it is very important that the UAV must
reach the destination before consuming all its energy. In this
regard, a feasible path from source to destination with less
energy consumption (EC) would be the priority. We assume
that the velocity of the UAV remains constant during flight.
We formulate EC as follows:

OEC =

∑Nw−1
i=1 FCi

maxFC
(22)

FCi = Pu ∗ ti,i+1 (23)

ti,i+1 =
di,i+1

v
(24)

di,i+1 =
√

(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2
(25)

where FCi represents the fuel burned in flying from the i-th
waypoint to waypoint (i + 1). Pu is the power of the UAV
at velocity v, while ti,i+1 is the total time taken by the UAV
to fly from the i-th waypoint to waypoint (1 + i); di,i+1

indicates the Cartesian distance of a flight from the i-th
waypoint to waypoint (1 + i), and maxFC is a normalized
value for fuel consumption, which can be formulated as
follows:

maxFC = (Nw − 1) ∗ Pu ∗
dmax

v

where dmax =
√
X2 + Y 2 + Z2

(26)

where X,Y,Z indicate the three dimensions of the UAV, i.e.,
the X-axis, Y-axis, and Z-axis, respectively, during flight
time.

4.2 Constraints Design

The constraints are designed to optimize the feasible path
for the flight. When a constraint is satisfied, it will be equal
to 0; if not, a penalty will be given. Assigning negative
penalty Q ensures that the path from source to destination
is guaranteed feasible, because the fitness value of each
optimized path is always positive. Considering the physi-
cal limitations of the UAV and the restrictions due to the
environment, we can design the constraints as follows:

FConstraints = UAVconstraints + Environmentconstraints
(27)

4.2.1 UAV CONSTRAINTS

These constraints are due to the physical properties of a
UAV during flight. The behavior offered by the UAV while
maneuvering should be regarded as a priority, because it
provides smoothness in flying to reach the destination. In
this respect, we take care of the critical aspects of a UAV
for turning angles as well as flying slope. Therefore, we can
define the UAV constraints as follows:

UAVconstraints = TA+ FS (28)

IEEE TRANSACTIONS ON MOBILE COMPUTING (2020) 9

TABLE 1
Simulation Parameters

Parameter Value
No. of UAVs 2
Speed 10 m/sec
Power 20
Iteration number 32, 64, 128, 256, 512
Sensitivity threshold 10
Turning angle threshold 85o

Gliding angle threshold −30o

Climbing angle threshold 30o

Minimum distance threshold 0.2
Initial environmental risk 1− 5

Flight time threshold 2
Grid size 20x20

4.2.1.1 Turning Angle: The turning angle explains
the maneuverability of a UAV in the horizontal direction,
i.e., the angle adopted during the flight from the previous
and current directions. The turning angle should be less than
the maximum tolerable threshold for turning, and therefore,
we formulate the turning angle as follows:

TA = 0, TA =
Nw−1∑
i=2

TAi

where TAi =

{
Q, if θ > θmax

0, otherwise

(29)

where θ ddefines the turning angle of the UAV in 3D
directions (xi, yi, zi), and θmax maximum tolerable angle.
The authors in [34] provided the formulation to calculate
turning angle θi as follows:

θ = arccos(
(pxi , pyi)(pxi+1 , pyi+1)T

‖(pxi
, pyi

)‖2 ‖(pxi+1
, pyi+1

)‖2
)

pxi = xi − xi−1
pxi+1 = xi+1 − xi
pyi = yi − yi−1
pyi+1 = yi+1 − yi

(30)

where ‖ x ‖2 is a vector norm for a vector x.
4.2.1.2 Flying Slope: The flying slope defines the

maneuverability of a UAV in the vertical direction, i.e.,
the slope adopted by the UAV while gliding and when
climbing. The slope taken by the UAV during flight is along
the horizontal direction from one waypoint to the next
waypoint. Considering the maximum tolerable thresholds
for gliding and climbing angles, the slope of a UAV can be
formulated as follows:

FS = 0, FS =
Nw∑
i=2

FSi

where FSi =

{
Q, if fi 6∈ [tan(αmax), tan(βmax)]

0, otherwise

(31)

(a) (b)

(c) (d)

Fig. 5. Flight path (sequence 0001)

(a) (b)

(c) (d)

Fig. 6. Flight path (sequence 0005)

IEEE TRANSACTIONS ON MOBILE COMPUTING (2020) 10

(a) (b)

(c) (d)

Fig. 7. Flight path (sequence 0012)

where FSi is the flying slope from one waypoint to the i-th
waypoint; αmax and βmax represent the maximum tolerable
gliding and climbing angles, and fi can be formulated,
according to [34], as follows:

fi =
zi − zi−1

‖(xi − xi−1, yi − yi−1)‖2
(32)

where fi is the flying slope taken by the UAV from the i-th
waypoint (xi, yi, zi).

4.2.2 Environment Constraints
There are some restrictions due to the external environ-
ment, which the UAV must follow. We have to consider
any restricted area where the UAV is not allowed to fly,
like military bases, critical government institutions, etc.
Therefore, the path to the destination should be designed
to avoid these restricted areas. Similarly, there are certain
situations where the UAV encounters an unexpected event,
for instance, an unregistered aerial vehicle, flying birds,
and toys flown by the general public. To deal with these
situations, we introduce region sensitivity in our planning
algorithm. This deals with randomly generated sensitive
regions where the UAV senses a hazard and optimizes
its path accordingly to avoid those regions and reach the
destination safely. Moreover, the terrain offers constraints
during flight. Therefore, constraints due to the environment
can be formulated as follows. We divide the whole path into
a 20x20 grid, and the UAV can sense four cells around itself.

Environmentconstraints = RA+RS + TL+ML+ CA
(33)

4.2.2.1 Restricted Area: There are some specific ar-
eas that UAVs are forbidden to fly through due to regu-
lations, for example, cantonments, restricted government
regions, etc., and therefore, the feasible path to reach the

destination should be a legal one, avoiding those regions.
For simplicity, we consider a restricted area to be a rectan-
gle. Designation of a restricted area can be formulated as
follows:

RA = 0, RA =
Nw∑
i=1

RACi

with RACi =

{
Q, if waypoint in Range (xr, yr)

0, otherwise

(34)

Range (xr, yr) = {mx ≤ xr ≤ nx} ∩ {my ≤ yr ≤ ny}
(35)

where mx and nx represent the lower and upper bounds,
respectively, for x coordinates of the r-th restricted area at
the i-th waypoint, whereas my and ny indicate the lower
and upper bounds, respectively, of y coordinates of the r-th
restricted area at the i-th waypoint.

4.2.2.2 Region Sensitivity: There are some uncondi-
tional and unexpected events that can happen during flight.
Therefore, there are randomly generated hazardous events
in the path of a UAV from source to destination. The UAV
senses the hazard and optimizes the path to avoid it. The
sensitivity of a region at any instant during the flight can be
formulated as follows:

Rs = 0, Rs =
Nw∑
i=1

Rsi(t)

where Rsi =
∑

cellx∈N(i)

vcellx(t)

Rsi =

{
Q, if Rsi > Rsth
0, otherwise

(36)

where Rsi(t)is the value for sensitivity at the i-th waypoint
during the flight at time t, and vcellx(t) is the cell value at
flight time t. N(i) is the set of neighbor cells for the i-th
waypoint. The UAV checks the values of the cells at every
waypoint, and if any cell has a sensitivity value greater than
the threshold, penalty Q will be given. It checks the values
of the set of neighbor cells for N(i) to avoid that region to
satisfy the constraint.

4.2.2.3 Terrain Limits: During flight, a UAV should
take into consideration the limitations of the terrain so that
the UAV always flies above it and avoids collisions (for
exmaple, with mountains). To adhere to a terrain constraint,
the algorithm gives penalty Q to provide the feasible path.
This constraint can be formulated as follows:

TL = 0, TL =
Nw∑
i=1

TLi

with TLi =

{
Q, if zi ≤ map(xi, yi)
0, otherwise

(37)

where map(xi, yi) is a function that returns the altitude of
the terrain location at point (xi, yi), which finds the number
of points inside that location.

IEEE TRANSACTIONS ON MOBILE COMPUTING (2020) 11

Keypoints
Keypoints
Matching

(a) Matching features (sequence 0001)

Keypoints
Keypoints
Matching

(b) Matching features (sequence 0005)

Keypoints
Keypoints
Matching

(c) Matching features (sequence 0012)

Fig. 8. Image registration between consecutive scenes

4.2.2.4 Map Limits: For a feasible path, the UAV
must stay inside the mission space to avoid uncertainties.
Therefore, the algorithm applies penalty Q to the points of a
trajectory that are off the map limits. This constraint ensures
the space of a mission can be formulated as follows:

ML =
Nw∑
i=1

MLi

with MLi =

{
0, Inmap(xi, yi)

Q, otherwise

(38)

Inmap(xi, yi) = (xml ≤ xi ≤ xmu) ∧ (yml ≤ yi ≤ ymu) (39)

where xml and xmu are the lower and upper bounds, respec-
tively, for the x coordinate, and yml and ymu are the lower
and upper bounds, respectively, for the y coordinate. The
minimum value to satisfy the map constraint is ML = 0.

4.2.2.5 UAV Collision Avoidance: In calculating the
paths for multiple UAVs, the planner must ensure the UAVs
do not come close to each other, which would increase the
possibility of a collision while following their respective
paths. In order to maintain a safe distance between them,

(a) Points cloud Map (sequence 0001)

(b) Points cloud Map (sequence 0005)

(c) Points cloud Map (sequence 0012)

Fig. 9. Map construction by VSLAM to be used for path planning

the constraint can be formulated as follows:

CA =

Nu
w∑

i=1

Nv
w∑

j=1

CAi

with CAi =

{
Q, if duvij < dmin

Q, otherwise

(40)

duvmin =
√

(xui − xvj)2 + (yui − yvj)2 + (zui − zvj)2 (41)

IEEE TRANSACTIONS ON MOBILE COMPUTING (2020) 12

Fig. 10. Terrain representation from the points cloud of sequence 0012

0 5 10 15 20 25 30 35 40 45 50

No. of Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
it
n

e
s
s
 V

a
lu

e

No. of Particles: 32

No. of Particles: 64

No. of Particles: 128

No. of Particles: 256

No. of Particles: 512

Fig. 11. Optimal fitness values for different numbers of optimization
particles

where dmin is the minimum distance between the UAVs to
avoid a collision, and duvij is the distance between the i-th
waypoint and the j-th waypoint of the u-th UAV trajectory
and the j-th UAV trajectory, respectively.

5 OPERATION OF THE PROPOSED PATH PLANNER

In this section, we explain the working mechanism of the
proposed multiple UAV–path planner, which is based on
visual-SLAM, PSO, and the DFF explained in sections 2, 3,
and 4, respectively. The proposed planner first utilizes the
elevation map generated by visual-SLAM and fed into the
PSO planning algorithm to derive the optimum trajectory
for each UAV to the defined destinations, in which the
DFF optimizes all the possible waypoint sequences to reach
destinations considering all constraints and objectives, along
with satisfying the collision avoidance condition. If all con-
ditions are satisfied, the planner will output the optimum

TABLE 2
Distance and Time comparison with the conventional PSO algorithm

Parameter Value
Distance covered by UAV1 3,062.4369 (m)
Distance covered by UAV2 3,065.0706 (m)
Travel time by UAV1 307.2542 (sec)
Travel time by UAV2 307.4481 (sec)

(a) Flight Dynamics of first flight using Proposed Algorithm

Parameter Value
Distance covered by UAV1 5,571.9591 (m)
Distance covered by UAV2 5,452.2465 (m)
Travel time by UAV1 551.6796 (sec)
Travel Time by UAV2 549.7633 (sec)

(b) Flight Dynamics of first flight using conventional PSO Algorithm

trajectory for each UAV to its destination, as shown in Figure
3.

In our proposed system, the path from source to destina-
tion consists of waypoints and line segments. We opted for
an eight-waypoint trajectory-generation system. For clear
understanding, we divided the whole operation area into
cells. First of all, we determine the estimated flight time
to the destination. Next, we initialize the PSO algorithm to
plan the optimum path for each UAV, which can be seen in
Figure 4 from step 5-33. In the quest to attain the optimum
trajectory for each UAV, at first, the planner randomly gen-
erates the velocity and position vectors of particle PN . Next,
using equation (15), the velocity and position vectors of each
particle are updated. After that, the proposed DFF is applied
to the updated particle as shown the working flowchart
of the DFF in Figure 2. Considering all the constraints
and objectives, the DFF optimizes each particle and finally
outputs the best particle, pi,best and the global best particle
in the swarm, sbest, which is explained in section 4. The
DFF output is based on the fitness value acquired by each
particle. Then, we store the optimum path for the first UAV
and set the iteration number to Nt. Before initializing the
other UAVs, we aim to derive a collision-free path, and
therefore, we check collision avoidance condition CA. If CA
is satisfied, the planner outputs optimum trajectories for all
UAVs; otherwise, it goes back to step 5 if the CA is not
satisfied. Finally, when the flight time reaches Tflight, the
planner will output the optimum paths for all UAVs to their
respective destinations. The process of the proposed planner
is represented in the pseudocode algorithm shown in Figure
4.

6 SIMULATION RESULTS

In this section, we develop a Matlab-based operational
environment to evaluate the working performance of the
proposed two-step UAV path–planning system. The main
simulation parameters are listed in Table 1. In our imple-
mentation, we used a data set [37] that was collected by a
monocular camera installed at the quad-copter, in different
environments. The data set is publicly available, and more
details can be found at midair.ulg.ac.be. The data set was

IEEE TRANSACTIONS ON MOBILE COMPUTING (2020) 13

0 10 20 30 40 50 60 70 80 90 100

No. of Iteration

10

11

12

13

14

15

16

17

18

19

20

R
is

k
 E

s
ti
m

a
ti
o

n

UAV1

UAv2

(a)

0 10 20 30 40 50 60 70 80 90 100

No. of Iteration

60

65

70

75

80

85

90

95

100

105

110

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
o

u
le

s
)

UAV1

UAV2

(b)

Fig. 12. Optimization of the PSO path planner performance in terms of
(a) risk estimation and (b) energy consumption

utilized as input to the optimization algorithm for multiple-
UAV path planning algorithm. We used different types of
test sequences, which can be seen in 5, 6, and 7, in our
system to construct an online map of the environment.
Figure 8 indicates the features in the consecutive scenes
that were matched to simultaneously build an incremental
map, which can be seen in Figure 9. The points cloud map
contains information on the x, y, z positions and normal
at every point. The terrain representations from the points
cloud can be seen in Figure 10. We utilized a triangulation
algorithm [38] to reconstruct the terrain from the points
cloud.

Figure 11 shows the effect of different numbers of par-
ticles on the optimal fitness value of the proposed DFF. We
can clearly see that the fitness value of the proposed DFF
converges to a stable value faster as the number of particles
and iterations increases. The optimization performance of
the path planner in terms of energy consumption and flight

(a) First flight

(b) Second flight

(c) Third flight

Fig. 13. Optimal trajectories of the UAVs from source to destination using
proposed algorithm

IEEE TRANSACTIONS ON MOBILE COMPUTING (2020) 14

0 10 20 30 40 50 60 70 80 90 100

No. of Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
it
n

e
s
s
 V

a
lu

e

UAV1

UAV2

Fig. 14. Optimal fitness values attained

Fig. 15. UAVs Flight using Conventional PSO Algorithm

risk estimation can be observed in Figure 12. We utilized
128 particles in our system. As the number of iterations
increased, the values of energy consumption and flight risk
estimation converged to a stable value. Moreover, the differ-
ence between the optimum value of energy consumption,
where both UAVs converge, is less than five, and the values
of flight risk estimation for both UAVs is similar, which
depicts the effectiveness of the proposed path planner by
ensuring fairness between the generated paths for both
UAVs.

Figure 13 shows the optimal paths followed by UAV 1
and UAV 2 from source to destination while avoiding sen-
sitive regions and restricted areas, respectively, for the first
three flights. The small red 1x1 rectangles have a sensitivity
greater than the threshold, while the black 2x2 rectangles
indicate restricted areas where UAVs are not allowed to
fly. The sensitive regions generate randomly, indicating a
hazardous event, so the proposed planner optimizes the
path until hazardous-free paths to the destinations are de-
termined. We can observe that the trajectories generated for

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

400

425

450

475

500

525

550

575

600

D
is

ta
n

c
e

 (
m

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

T
im

e
 (

s
)

1 2 3 4 5 6 7 8

Waypoints

Distance (m)

Time (second)

(a)

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

400

425

450

475

500

525

550

575

600

D
is

ta
n

c
e

 (
m

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

T
im

e
 (

s
)

1 2 3 4 5 6 7 8

Waypoints

Distance (m)

Time (second)

(b)

Fig. 16. UAV flight dynamics in terms of distance and time using Pro-
posed algorithm for (a) UAV 1 and (b) UAV 2

each flight time avoids all the sensitive regions and reach
the destination safely. The proposed algorithm also ensures
that the multiple UAVs do not collide with each other. The
green 1x1 rectangles represent the source and destination. In
Figure 13, the yellow highlighted areas are high elevations.
We can also see that the trajectory waypoints generated do
not overlap, and a UAV reaches the destination by following
the shortest path, which indicates the high efficiency of the
proposed planner. Therefore, Figure 14 indicates the high
fitness value attained by each UAV driven by the proposed
path planner.

Figure 15 indicates the trajectories generated by the
conventional PSO. blue As the defined environment is
dynamically complex due to which conventional PSO is
incompatible with adapting the situation; therefore, it takes

IEEE TRANSACTIONS ON MOBILE COMPUTING (2020) 15

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

400

425

450

475

500

525

550

575

600

625

650

675

700

725

750

775

800

825

850

875

900

D
is

ta
n

c
e

 (
m

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

T
im

e
 (

s
)

1 2 3 4 5 6 7 8

Waypoints

Distance (m)

Time (second)

(a)

0
25
50
75

100
125
150
175
200
225
250
275
300
325
350
375
400
425
450
475
500
525
550
575
600
625
650
675
700
725
750
775
800
825
850
875
900
925
950
975

1000
1025
1050
1075
1100
1125
1150
1175
1200

D
is

ta
n
c
e
 (

m
)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

115

120

125

130

135

140

145

150

T
im

e
 (

s
)

1 2 3 4 5 6 7 8

Waypoints

Distance (m)

Time (second)

(b)

Fig. 17. UAV flight dynamics in terms of distance and time using con-
ventional PSO algorithm for (a) UAV 1 and (b) UAV 2

very high computational time to converge. Considering the
incompatibility of the conventional PSO in our environment,
we choose to make the environment less complicated and
convenient to converge. The computational time for the
conventional PSO for the simple environment is higher
than our proposed algorithm in the dynamic and complex
environment. The conventional PSO takes 1,767 seconds
while our proposed algorithm takes 739.8 seconds. The same
computer is used to run the both algorithms. The table
2 indicates the flight statistics of both algorithms for the
first flight. The conventional PSO algorithm for both UAVs
reaches the destination following the long path. It takes
more travel time while our proposed algorithm reaches the
destination for both UAVs following the shortest path and
in optimal travel time in a highly complex environment.

1 2 3 4 5 6 7 8

Waypoints

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
it
n

e
s
s
 V

a
lu

e

UAV1

UAV2

Fig. 18. Fitness values attained at each waypoint during the flight

The distance covered from one waypoint to another and
the corresponding flight times for both UAVs can be seen in
Figure 16. The total distances from the source to destination
covered by UAVs during the first flight were 3,062.4369 m
and 3,065.0706 m. Likewise, the times taken to reach the
destinations for both UAVs were almost the same i.e., 307
sec. Similarly, Figure 17 indicates the distance covered and
corresponding flight time for both UAVs from one waypoint
to another using the conventional PSO algorithm. We can
observe that the distance and time taken at each waypoint
is greater than the proposed algorithm. The total distance
covered by the UAVs for the first flight is 5,571.9591 (m) and
6,065.0706 (m). Similarly, the total time consumed by UAV1
and UAVs is 551.6796 (sec) and 549.7633 (sec), respectively.

In Figure 18, we show the fitness values attained at each
waypoint by both UAVs during their flights. We sum up
the optimal fitness values of all waypoints for UAV 1 and
UAV 2. The total optimal fitness for all the wayponts of
UAV 1 and UAV 2 were 5.52 and 5.51, respectively, which
are virtually the same and which depict the fairness of our
proposed two-step path planner.

7 CONCLUSIONS

In this paper, we designed a two-step, centralized sys-
tem to construct a map using state-of-the-art visual-SLAM.
We introduce corner-edge points matching mechanism to
stabilize the system with the least extracted map points.
The proposed algorithm effectively detects the keypoints
in different environments and successfully registered the
features. The constructed map is processed as an input
mean for the particle swarm optimization algorithm to
plan UAVs’ optimum path. We proposed a dynamic fitness
function considering different optimization objectives and
constraints in terms of UAV flight risk estimation, energy
consumption, and maneuverability for the operational time.
We also proposed a path-updating mechanism based on
region sensitivity to avoid sensitive regions if any hazardous

IEEE TRANSACTIONS ON MOBILE COMPUTING (2020) 16

and unexpected event detects in UAVs’ paths. The system
effectively avoids the sensitive regions and returns collision-
free paths to reach UAV to the destinations safely. The
simulation results validate the effectiveness of our proposed
PSO-VSLAM system.

We currently consider two UAVs over different flight
times to evaluate our proposed PSO-VSLAM system’s per-
formance, and it successfully outputs the collision-free tra-
jectories and proves high adaptability towards the com-
plex dynamic environment. Therefore, we plan to consider
more than two UAVs in our future work and implement
machine learning algorithms because our proposed system
effectively achieves the collision-free trajectories for two
UAVs while adapting to the highly dynamic and complex
environment.

ACKNOWLEDGMENTS

This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea Government
(MSIT) under Grant NRF-2019R1F1A1061696

REFERENCES

[1] Cadena, Cesar, Luca Carlone, Henry Carrillo, Yasir Latif, Davide
Scaramuzza, José Neira, Ian Reid, and John J. Leonard. ”Past,
present, and future of simultaneous localization and mapping:
Toward the robust-perception age.” IEEE Transactions on robotics 32,
no. 6 (2016): 1309-1332.

[2] Trujillo, Juan-Carlos, Rodrigo Munguia, Edmundo Guerra, and
Antoni Grau. ”Cooperative monocular-based SLAM for multi-UAV
systems in GPS-denied environments.” Sensors 18, no. 5 (2018):
1351.

[3] Du, Hao, Wei Wang, Chaowen Xu, Ran Xiao, and Changyin Sun.
”Real-Time Onboard 3D State Estimation of an Unmanned Aerial
Vehicle in Multi-Environments Using Multi-Sensor Data Fusion.”
Sensors 20, no. 3 (2020): 919.

[4] Ramezani, Milad, Georgi Tinchev, Egor Iuganov, and Maurice
Fallon. ”Online LiDAR-SLAM for Legged Robots with Robust
Registration and Deep-Learned Loop Closure.” arXiv preprint
arXiv:2001.10249 (2020).

[5] Montemerlo, M. ”A Factored Solution to the Simultaneous Local-
ization and Mapping Problem with Unknown Data Association.”
Ph. D. thesis, Carnegie Mellon University (2003).

[6] Loo, Shing Yan, Syamsiah Mashohor, Sai Hong Tang, and
Hong Zhang. ”DeepRelativeFusion: Dense Monocular SLAM
using Single-Image Relative Depth Prediction.” arXiv preprint
arXiv:2006.04047 (2020).

[7] Shakhatreh, Hazim, Ahmad H. Sawalmeh, Ala Al-Fuqaha, Zuochao
Dou, Eyad Almaita, Issa Khalil, Noor Shamsiah Othman, Abdal-
lah Khreishah, and Mohsen Guizani. ”Unmanned aerial vehicles
(UAVs): A survey on civil applications and key research chal-
lenges.” Ieee Access 7 (2019): 48572-48634.

[8] Mughal, Umair Ahmad, Jiao Xiao, Ishtiaq Ahmad, and KyungHi
Chang. ”Cooperative resource management for C-V2I communica-
tions in a dense urban environment.” Vehicular Communications 26
(2020): 100282.

[9] Mughal, Umair Ahmad, Ishtiaq Ahmad, and KyungHi Chang.
”Virtual cells operation for 5G V2X communications.” In Proceedings
of KICS (2019): 1486-1487.

[10] Shakoor, Shanza, Zeeshan Kaleem, Muhammad Iram Baig, Omer
Chughtai, Trung Q. Duong, and Long D. Nguyen. ”Role of UAVs in
public safety communications: Energy efficiency perspective.” IEEE
Access 7 (2019): 140665-140679.

[11] Wen, Shuhuan, Yanfang Zhao, Xiao Yuan, Zongtao Wang, Dan
Zhang, and Luigi Manfredi. ”Path planning for active SLAM based
on deep reinforcement learning under unknown environments.”
Intelligent Service Robotics, pp. 1-10, (2020).

[12] Kalogeiton, Vicky S., Konstantinos Ioannidis, G. Ch Sirakoulis,
and Elias B. Kosmatopoulos. ”Real-time active SLAM and obsta-
cle avoidance for an autonomous robot based on stereo vision.”
Cybernetics and Systems, vol. 50, no. 3, pp. 239-260, (2019).

[13] Doitsidis, Lefteris, Stephan Weiss, Alessandro Renzaglia, Markus
W. Achtelik, Elias Kosmatopoulos, Roland Siegwart, and Davide
Scaramuzza. ”Optimal surveillance coverage for teams of micro
aerial vehicles in GPS-denied environments using onboard vision.”
Autonomous Robots, vol. 33, no. 1-2, pp. 173-188, (2012) .

[14] Alzugaray, Ignacio, Lucas Teixeira, and Margarita Chli. ”Short-
term UAV path-planning with monocular-inertial SLAM in the
loop.” In 2017 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 2739-2746. IEEE, 2017.

[15] Sánchez-Garcı́a, Jesús, D. G. Reina, and S. L. Toral. ”A distributed
PSO-based exploration algorithm for a UAV network assisting a
disaster scenario.” Future Generation Computer Systems 90 (2019):
129-148.

[16] Shi, Weisen, Junling Li, Wenchao Xu, Haibo Zhou, Ning Zhang,
Shan Zhang, and Xuemin Shen. ”Multiple drone-cell deployment
analyses and optimization in drone assisted radio access networks.”
IEEE Access 6 (2018): 12518-12529.

[17] Ghamry, Khaled A., Mohamed A. Kamel, and Youmin Zhang.
”Multiple UAVs in forest fire fighting mission using particle swarm
optimization.” In 2017 International Conference on Unmanned Aircraft
Systems (ICUAS), pp. 1404-1409. IEEE, 2017.

[18] Cheng, Ze, Ergang Wang, Yixin Tang, and Yucui Wang. ”Real-time
Path Planning Strategy for UAV Based on Improved Particle Swarm
Optimization.” JCP 9, no. 1 (2014): 209-214.

[19] Bircher, Andreas, Mina Kamel, Kostas Alexis, Helen Oleynikova,
and Roland Siegwart. ”Receding horizon” next-best-view” planner
for 3d exploration.” In 2016 IEEE international conference on robotics
and automation (ICRA), pp. 1462-1468. IEEE, 2016.

[20] Hu, Teng, Ishtiaq Ahmad, M. S. M. Alamgir, and KyungHi Chang.
”3D Optimal Surveillance Trajectory Planning for Multiple UAVs
by Using Particle Swarm Optimization with Surveillance Area
Priority.” IEEE Access (2020).

[21] Pattanayak, Suvranshu, and Bibhuti Bhusan Choudhury. ”Modi-
fied crash-minimization path designing approach for autonomous
material handling robot.” Evolutionary Intelligence (2019): 1-14.

[22] Yu, Xiaobing, Chenliang Li, and JiaFang Zhou. ”A constrained
differential evolution algorithm to solve UAV path planning in
disaster scenarios.” Knowledge-Based Systems 204 (2020): 106209.

[23] Dasdemir, Erdi, Murat Köksalan, and Diclehan Tezcaner Öztürk.
”A flexible reference point-based multi-objective evolutionary al-
gorithm: An application to the UAV route planning problem.”
Computers and Operations Research 114 (2020): 104811.

[24] Qu, Chengzhi, Wendong Gai, Jing Zhang, and Maiying Zhong. ”A
novel hybrid grey wolf optimizer algorithm for unmanned aerial
vehicle (UAV) path planning.” Knowledge-Based Systems (2020):
105530.

[25] Atencia, Cristian Ramirez, Javier Del Ser, and David Camacho.
”Weighted strategies to guide a multi-objective evolutionary algo-
rithm for multi-UAV mission planning.” Swarm and evolutionary
computation 44 (2019): 480-495.

[26] Zhou, Haoyin, Tao Zhang, and Jayender Jagadeesan. ”Re-
weighting and 1-Point RANSAC-Based P n n P Solution to Handle
Outliers.” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 41, no. 12, pp. 3022-3033, (2018).

[27] Kneip, Laurent, Davide Scaramuzza, and Roland Siegwart. ”A
novel parametrization of the perspective-three-point problem for
a direct computation of absolute camera position and orientation.”
In CVPR 2011, pp. 2969-2976. IEEE, 2011.

[28] Chum, Ondrej, and Jiri Matas. ”Matching with PROSAC-
progressive sample consensus.” In 2005 IEEE computer society con-
ference on computer vision and pattern recognition (CVPR’05), vol. 1,
pp. 220-226. IEEE, 2005.

[29] Bellavia, F., D. Tegolo, and Cf Valenti. ”Improving Harris corner
selection strategy.” IET Computer Vision, vol. 5, no. 2, pp. 87-96,
(2011).

[30] Canny, John. ”A computational approach to edge detection.” IEEE
Transactions on pattern analysis and machine intelligence, vol. 6, pp.
679-698, (1986).

[31] Karami, Ebrahim, Siva Prasad, and Mohamed Shehata. ”Image
matching using SIFT, SURF, BRIEF and ORB: performance compar-
ison for distorted images.” arXiv preprint arXiv:1710.02726 (2017).

[32] Ohta, Yuichi, and Takeo Kanade. ”Stereo by intra-and inter-
scanline search using dynamic programming.” IEEE Transactions on
pattern analysis and machine intelligence , vol. 2, pp. 139-154 (1985).

[33] Lowe, David G. ”Fitting parameterized three-dimensional models
to images.” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 13, no. 5, pp. 441-450, (1991).

IEEE TRANSACTIONS ON MOBILE COMPUTING (2020) 17

[34] Zheng, Changwen, Lei Li, Fanjiang Xu, Fuchun Sun, and Mingyue
Ding. ”Evolutionary route planner for unmanned air vehicles.”
IEEE Transactions on robotics, vol. 21, no. 4, pp. 609-620 ,(2005).

[35] Kennedy, James, and Russell Eberhart. ”Particle swarm optimiza-
tion.” In Proceedings of ICNN’95-International Conference on Neural
Networks, vol. 4, pp. 1942-1948. IEEE, 1995.

[36] Roberge, Vincent, Mohammed Tarbouchi, and Gilles Labonté.
”Comparison of parallel genetic algorithm and particle swarm
optimization for real-time UAV path planning.” IEEE Transactions
on industrial informatics, vol. 9, no. 1, pp. 132-141,(2012).

[37] Fonder, Michaël, and Marc Van Droogenbroeck. ”Mid-Air: A
multi-modal dataset for extremely low altitude drone flights.” In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pp. 0-0. 2019.

[38] Guo, Xiangkun, Sihuan Chen, Hu Lin, Hongliang Wang, and
Shuai Wang. ”A 3D terrain meshing method based on discrete
point cloud.” In 2017 IEEE International Conference on Information
and Automation (ICIA), pp. 12-17. IEEE, 2017.

Umair Ahmad Mughal received the B.S.
in electrical engineering from the University
of Engineering and Technology, Peshawar,
Pakistan, in 2015, and the Master degree in
electrical and computer engineering from INHA
University, Korea. From 2020 to 2021, he was
with the Oceanic IT Convergence Technology
Research Institute, Hoseo University, Korea.

His research interests include Cellular
Vehicle-to- Everything (C-V2X) with 5G
communications, interference management,

UAVs path planning, underwater acoustic communication, machine
learning, and AI applications with SLAM technology. He is a recipient
of the Jungseok International Scholarship to pursue his M.S. studies at
Inha University due to his excellent academic career.

ISHTIAQ AHMAD received the B.S. degree in
Electrical Engineering from the University of
Engineering and Technology (UET), Peshawar,
Pakistan, in 2007, and the M.S. and Ph.D. de-
gree in Electronic Engineering from Inha Univer-
sity, Korea, in 2014 and 2019, respectively.

From 2007 to 2008, he was a BSS Engi-
neer with the O&M Department, Zong Pakistan.
Since 2009, he has been a Lecturer with the
Faculty of Engineering and Technology (FET),
Gomal University, Pakistan. He has authored

several International journals and IEEE conference papers and also
holds U.S. and Korean patents.

His research interests include interference management in 3GPP
LTE-A & 5G systems, public safety and mobile ad-hoc networks (es-
pecially for UAV), cellular-V2X technology, and maritime & underwater
communications, and applications of Artificial Intelligence technologies.
He was a recipient of the Jungseok International Scholarship to pursue
his M.S. and Ph.D. degrees at Inha University, due to his excellent
academic career. He received the Outstanding Research Award and
Excellent Student Award from the Inha University, in 2019, for his ex-
cellence of journal publication and outstanding research achievements.
He is currently working at Electrical Engineering Department, Faculty of
Engineering and Technology, Gomal University, Pakistan.

KYUNGHI CHANG (SM’98) received the B.S.
and M.S. degrees in electronics engineering
from Yonsei University, Seoul, South Korea, in
1985 and 1987, respectively, and the Ph.D. de-
gree in electrical engineering from Texas A&M
University, College Station, TX, USA, in 1992.
From 1989 to 1990, he was with the Samsung
Advanced Institute of Technology (SAIT) as a
member of the research staff and was involved
in digital signal processing system design. From
1992 to 2003, he was with the Electronics and

Telecommunications Research Institute (ETRI) as a Principal Member
of the technical staff, where he led the design teams involved in the
WCDMA UE modem and 4G radio transmission technology (RTT). He
is currently with the Electrical and Computer Engineering Department,
Inha University.

His research interests include radio transmission technology in 3GPP
LTE & 5G systems, public safety and mobile ad-hoc networks (espe-
cially for UAV), cellular-V2X technology, maritime & underwater com-
munications, applications of AI technologies, and NTN(Non-Terrestrial
Network) & network intelligence for 6G. He was a recipient of the LG
Academic Awards, in 2006, the Haedong Best Paper Awards, in 2007,
the IEEE ComSoc Best Paper Awards, in 2008, the Haedong Academic
Awards, in 2010, the SKT SafeNet Best Idea Awards, in 2015, the KICS
Outstanding Academic Society Awards, in 2018 and in 2019, and MSIT
Minister’s Commendation and KICS Fellow in 2020. He is currently a
Chairman of the Expert Committee in SafeNet Forum, and Mobile and
Automotive Convergence Committee in 5G Forum. He has served as
an Editor-in-Chief and an Executive Director for the Journal of Korean
Institute of Communications and Information Sciences (KICS), from
2010 to 2012 and in 2013, respectively, and as a Vice President at the
KICS from 2017 to 2018. He has also served as an Editor of ITU-R
TG8/1 IMT.MOD.

